

Advanced Computing

Jaguar Reaches the Top

Installed in 2008, the Jaguar supercomputer is named the world's most powerful computer. Supercomputer Kraken is named third most powerful in the TOP500 ranking.

We're #1, Again

The Titan supercomputer replaces the Jaguar supercomputer at ORNL. For a time, it ranks first in the TOP500 as the world's fastest supercomputer and consistently ranks as America's fastest supercomputer.

Reaching the Summit

ORNL launches Summit, its third supercomputer in a row to reach #1 in the Top500. Compared with Titan, Summit moves data 5 to 10 times faster and stores 8 times more data.

Breaking Exascale

The Frontier supercomputer debuts as the world's fastest. It is the first to achieve an unprecedented level of computing performance known as exascale, a threshold of a quintillion calculations per second.

Advanced Computing for Solving Big Problems

Advanced Computing for Optimization Challenges

CAK RIDGE

Quantum Computing in Material Science

Quantum Computing in Material Science

Quantum Computing in Material Science

Machine Learning Model for Hamiltonian

Factorization machine (FM): Supervised learning model

CAK RIDGE

Steffen Rendle. 2010 IEEE International conference on data mining, 995 (2010)

Hamiltonian (quadratic unconstrained binary optimization; QUBO)

Surrogate model representing design space

Machine Learning Surrogate Model for Hamiltonian

Factorization machine (FM): Supervised learning model

Machine Learning Surrogate Model for Hamiltonian

Factorization machine (FM): Supervised learning model

CAK RIDGE

Active Learning for Material Design (AI+HPC+QC integration)

Active learning algorithm using machine Learning and quantum computing to find optimal material structures with low FOM

- 1. Initial data set is generated: {25 material structures, 25 FOMs} which are calculated by simulation
- 2. FM is trained with a dataset $\{x:FOM\}_n \rightarrow Hamiltonian$
- 3. QC predicts an optimal structure(x_{po}) with the lowest FOM_{QA:po} based on the given QUBO surrogate
 - x_{po} may not be the true optimal state due to the limited extrapolative ability of the FM model trained on limited data.
- 4. Simulation takes the x_{po} and calculates FOM (FOM_{Simulation:po})
- 5. The data set is updated by adding x_{po} :FOM_{simulation:po} to {x:FOM}_n \rightarrow {x:FOM}_{n+1}
 - ✓ Iterate 1-5

Designed Metamaterials

Metamaterial Optical Diode x = 0010 0011 0100 1000 Air = 0 $SiO_2 = 0$ Ag = 1 T_{B.0} Backward Case Air pixel Air n_1 (Air) Λ_{G} < 0 0 1 0 0 0 1 1 Ag pixel 0 1 0 0 1 0 Unit cell 0 0 n₂ (SiO₂) SiO_2 pixel SiO₂ Т_{Г,-1} T_{E+1} Λ_G T_{F,0} Forward Case

Transparent Radiative Cooler

Kim et. al., ACS Energy Letters, 2022, 7, 4134–4141 Kim et. al., Nano Convergence, 2024, 11, 16

Wide-Angle Spectral Filter **Metamaterial Solar Absorber** Pattern 500 nm d1 Z d2 Solar spectrum PDMS d3 UV 💧 Visible NIR / УŤ TiN Spectral SiO. Filter X TiN SiO₂ TiN Thermal radiation Kim et. al., ACS Applied Materials & Interfaces, 2023, 15, 40606-40613 Substrate Kim et. al., Cell Reports Physical Science, 2024, 5, 101847 Building Energy saving window $\lambda_0 = 800 \text{ nm}$ $\lambda_0 = 800 \text{ nm}$ Backward case Forward case 1.6 1.00 0.88 **Performance Evaluation** 1.2 0.70 y (mm) 0.66 0.8 1000 70 0.55 Ref 1 Perfect reflector 0.4 7 Ref 2 Reflective cooler Glass Solar 0.44 800 Temperature (°C) 0.0 + 0.0 0.33 ar irradiance (W/m²) 60 40 200 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 Coole x (mm) x (mm) MOH 3 Ref 3 Ref 4 $\lambda_0 = 1000 \text{ nm}$ Backward case Forward case $\lambda_0 = 1000 \text{ nm}$ 1.6 1.00 0.88 Ref 5 2 1.2 UV-fused silica Ref 6 Ref 7 0.70 (mm) 50% tinting 0.8 0.66 101 TRC 06:00 19:00 06:00 19:00 + > 0.55 Energy-saving glass This work Apr. 22 Apr. 21 0.4 This work 0.44 Λ Refs: Nat. Nanotechnol. 2021, 16 (12), 1342, EcoMat. 2022, 4 (1), e12153, Adv. Opt. Mater. 2021, 9 (13), 2002226, Adv. Mater. Interfaces 2021, 2201050, 0.33 0.0 SOAK RIDGE 1.0 2.0 0.5 1.5 2.0 0.0 0.5 1.0 1.5 0.0 Adv. Funct. Mater. 2022, 32 (1), 2105882, Nano Energy 2021, 89, 106440, Int. J. Appl. Glass Sci. 2010, 1 (1), 118 National Laboratory x (mm) x (mm)

Designed Metamaterials

Gate-Based Quantum Computing to Solve QUBO Surrogates

Kim & Suh, arXiv preprint arXiv:2407.20212, 2024

Distributed QAOA (DQAOA) on HPC-QC Integrated Systems

Why DQAOA?

- Optimizing metamaterials for continuous variables makes a very large QUBO (10,000 x 10,000)
 - ✓ Large QUBO (size: 10,000) requires large sub-QUBOs (size: ~100)
 - → QAOA (optimized algorithm with advanced simulators on HPC) shows great potential in solving QUBOs
- Higher-order interactions (not just pair-wise interactions) should be considered for metamaterial optimization (HUBO)
 - QAOA is the best for higher-order optimization problems
 - \rightarrow QAOA shows a much better performance than other solvers

Shaydulin et. al., Science Advances, 2024, 10, 6761 Bucher et. al., arXiv preprint arXiv:2405.07624, 2024

Decomposition Policy

Performance Analysis of dq-QAOA (single core)

• QAOA on a single core (dq-QAOA) can efficiently solve QUBO problems (size: up to 150)

• Hyperparameter tuning (number of iterations, and sub-QUBO size) can improve the global solution quality, but increase time-to-solution a lot

A: 300 iterations, 4 subQUBO size B: 3000 iterations, 4 subQUBO size C: 300 iterations, 8 subQUBO size D: 1000 iterations, 8 subQUBO size

CAK RIDGE National Laboratory

- DQAOA running on multi-cores/nodes can solve large QUBO problems (size: up to 1,000) with high accuracy and low time-to-solution
- DQAOA shows the highest accuracy and shortest time-to-solution (>7 times than dq-QAOA, and >160 times than QAOA)
- DQAOA not only addresses the limitations of current quantum techniques but also sets a foundation for future advancements as quantum technology continues to evolve
 CAK RIDGE

National Laboratory

DQAOA on Quantum-Centric Supercomputer Architecture

- DQAOA on QCSC (IBM-Strasbourg & IBM-Kyiv) achieves a high approximation ratio (~0.97) for a problem of size 22
- It also successfully solves a larger problem (size: 100) with a high approximation ratio (~0.94)
- Increasing the number of iterations is expected to further improve the approximation ratio

Active Learning using DQAOA (AL-DQAOA) for Material Design

CAK RIDGE

Optimization Results

Optimization Results

Optimization Results

Optical Properties

Future Work

DQAOA with Quantum Devices

Conclusion

- QUBO surrogales can be generaled using Faclorization Machine
- Quantum computing (annealing) can be used to solve QUBO problems
- Functional materials (metamaterials) are designed and fabricated using the
 - proposed active learning algorithm

real-world optimization problems

- Efficiency of the active learning algorithm is demonstrated
- Performance of the designed materials is experimentally demonstrated
- DQAOA algorithm working on the HPC-QC integrated system is proposed to tackle
 - large-scale optimization problems using the current quantum computing systems
- Active learning algorithm with DQAOA can solve large-scale

Papers, Profile

CAK RIDGE National Laboratory

Thank you!

Questions?

Solar transmission efficiency	0.6738
Solar reflection efficiency	0.3262
Visible transmission efficiency	0.9196
Visible reflection efficiency	0.0804
IR transmission efficiency	0.3908
Hemispherical emission efficiency	0.5343

CAK RIDGE

Appendix

Abstract

In this tutorial, we provide an overview of distributed variational optimization algorithms designed to harness the power of integrated quantum-HPC ecosystems for solving large-scale combinatorial optimization problems. We focus on the Distributed Quantum Approximate Optimization Algorithm (DQAOA), a scalable quantum-classical hybrid algorithm that distributes quantum workloads across multiple QPUs or simulators, coordinated via classical HPC infrastructure.

A key of the tutorial is the application of DQAOA to materials optimization problems, which are naturally formulated as large and densely connected quadratic unconstrained binary optimization (QUBO) problems. These QUBO instances often exceed the capacity of current quantum hardware or simulator. We will present real-world case studies involving high-dimensional materials design problems, showcasing how distributed quantum resources can accelerate the search for optimal material configurations.

