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What and Why Distributed Quantum Computing?

Renger, M., et al. "Cryogenic microwave link for quantum local area networks."
arXiv preprint arXiv:2308.12398 (2023).

Quantinuum (Ion Trap – Optical Controlled)

IBM Quantum (Superconducting Circuits – Microwave Controlled)
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Quantum-HPC and Distributed Quantum Computing

Motivation
Distributed quantum computing offers a scalable pathway to extend QAOA beyond the limitations of 
individual NISQ devices by parallelising computation across modular quantum processors—enabling 
practical solutions to large-scale optimisation problems.

Main, D., et al. "Distributed quantum computing across an 
optical network link." Nature (2025): 1-6.

Distributed Quantum Error Correction Code

Sutcliffe, Evan, et al, arXiv preprint 
arXiv:2501.14029 (2025).
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Circuit Partition in Distributed Quantum Computing
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Challenges for Partitioning Distributed Quantum Circuits
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Temporal Hypergraph Partitioning
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Temporal Hypergraph Partitioning



Partition

Refine and 
initialise

Partition

Refine and 
initialise

…
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Multilevel Partitioning
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Partition over Larger Networks
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Partition over Larger Networks
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Resource Efficient 
Compilation for Distributed 
Quantum Computing
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Gate-Based NISQ Quantum Algorithms

• Gate-based Quantum Machine Learning Algorithm

In this expression, 𝑆 represents 

either the 𝑘-th element or a set 

of 𝑘 elements drawn from 𝑛, 

which generally indicates the 

connectivity among various 

qubits or data points. The 

indices 𝑘 range from 1 to 𝑛, 

and 𝑍𝑘  represents the 

application of 𝑅𝑍 operations 

Unitary Gate:

Kernel
Function: Chen, Kuan-Cheng, et al. "Quantum-Enhanced 

Support Vector Machine for Large-Scale Multi-class 

Stellar Classification." International Conference on 

Intelligent Computing. Singapore: Springer Nature 

Singapore, 2024.
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Validation of Large-Scale Quantum Computing

Example: Quantum Machine Learning Algorithm:

Quantum-enhanced Support Vector Machines (SVMs) leverage quantum 
computing to achieve exponential speedups in training and classification 
tasks for SVMs, addressing the computational challenges faced in large-
scale big-data applications.

Cost of Quantum Circuit Simulation with Naïve State Vector on CPU:

➢Exponential growth with an increase in qubits

▪ HPC with 3 PB memory can only simulate 47 qubits arbitrary 
circuit.

▪ Simulate one 40-qubit circuit for QSVM takes roughly one 
day.

➢Quadratic growth with an increase in data size

▪ Insufficient training data will affect the model's performance.

Solution for Large-Scale Qubit Systems with Large Datasets

➢cuQuantum SDK with cuTensorNet approach can reduce the 
computational complex for simulating large-scale quibt system 
(toward a thousand of qubits).

➢Multi-GPU with Message Passing Interface (MPI) in DGX 
clusters allows for efficient scaling of dataset in QSVMs.

Chen, Kuan-Cheng, et al. "Validating Large-Scale Quantum Machine Learning: Efficient 

Simulation of Quantum Support Vector Machines Using Tensor Networks." Machine Learning: 
Science and Technology (2024).
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Validation of Large-Scale Quantum Computing
• Reduction in Computational Complexity: The tensor network simulation workflow, enhanced by Nvidia GPU, drastically reduces the 

computational complexity from exponential in the number of qubits O 2𝑛  to polynomial O 𝑛2 , enabling more efficient processing of large 
datasets and complex quantum circuit simulations.

• Multi-GPU Execution and Efficiency: Utilizing multi-GPU configurations, the cuTensorNet framework achieves significant computational 
speedups by employing strategies such as path reuse and asynchronous tensor contractions, which minimize delays and optimize GPU 
resource utilization, resulting in a substantial increase in throughput over traditional CPU-based methods. 

• Scalability with Multi-GPU Systems: The integration of cuTensorNet with MPI on multi-GPU systems demonstrates strong linear scalability, 
effectively decreasing the computation time for QSVM simulations across large datasets. This approach allows for real-time processing 
enhancements and fosters the practical application of quantum simulations in real-world scenarios.

Chen, Kuan-Cheng, et al. "Validating Large-Scale Quantum Machine Learning: Efficient 

Simulation of Quantum Support Vector Machines Using Tensor Networks." Machine Learning: 
Science and Technology (2024).
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Validation of Large-Scale Quantum Computing

• Validating the Quantum Kernel Method Using Tensor-Network Simulation with NVIDIA 
Multi-GPU Processing

• Gate-based quantum machine learning (QML) algorithms can suffer from barren 
plateaus or exponential concentration—leading to inefficient training—as the number 
of qubits increases. (the case here follows Superconducting Circuit Architecture)

Chen, Kuan-Cheng, et al. "Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks."
Machine Learning: Science and Technology (2024).

Exponential Concentration
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Motivation of Applying DQC for QAOA

The real-world problem:

In real-world optimization problems, data is often not homogeneously distributed. For example, in railway 
optimization, individual areas or regions may have dense railway networks, whereas inter-regional connections 
often rely on a few main routes. This formulation aligns well with the problem formulation of distributed quantum 
computing, where tasks can be divided based on varying data densities.
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Noise-Aware Distributed QAOA Compilation Strategy

Some IBM Quantum QPU Topologies:

Device 1 Device 2

Device 3> Threshold

Chen et al., IEEE QCE 25’

05/06/2025



QAOA Algorithms on Noisy Hardware

This Noise-Aware Distributed QAOA algorithm optimally partitions large graphs based on QPU capacity and 
node size, applying balanced MinCut (based on problem-informed formulation, for example city distribution) 
and reformulated QAOA strategies to ensure efficient multi-node execution with noise-aware compilation.
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Noise-Aware Distributed QAOA Compilation Strategy

Research Framework in this work:

Evaluation

Chen et al.,
IEEE QCE 25’
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HamilToniQ: Application-Oriented QPU Benchmarking Toolkit

• Include all factors (QPU, compilation, QEM, …).

• H-Scores are comparable.

• Automatic, easy to use.

Workflow of HamilToniQ

How to calculate H-Score:

Xu, Xiaotian, Kuan-Cheng Chen, and Robert Wille. "HamilToniQ: An Open-Source Benchmark Toolkit for Quantum 
Computers." IEEE QCE’24
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HamilToniQ: Application-Oriented QPU Benchmarking Toolkit

Xu, Xiaotian, Kuan-Cheng Chen, and Robert Wille. "HamilToniQ: An Open-Source Benchmark Toolkit for Quantum 
Computers." IEEE QCE’24 Submitted

Benchmarking results on several IBM QPUs with 5 qubits. 

Math Behind the H-Score:

Worst

Better
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HamilToniQ: Application-Oriented QPU Benchmarking Toolkit

(1) QPUs on quantum cloud server

Xu, Xiaotian, Kuan-Cheng Chen, and Robert Wille. "HamilToniQ: An Open-Source Benchmark Toolkit for Quantum 
Computers." IEEE QCE’24 Submitted

(2) QPU Topology (3) Quantum Error Mitigation

What HamilToniQ Toolkit can benchmark?

Chen et al.,
IEEE QCE 25’
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Task Partition Perspective –
 
Application to solve large-scale wireless communication network problems

Quadratic unconstrained 

binary optimization (QUBO)

 Formulation:

Optimizer

[ can be classically partitioning the sub-QUBO formulation by breadth-first search (BFS)]
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Solving Large-Scale Wireless Communication Network Problems

Example for Distributed QAOA problem benchmarking

Compilation Strategy for Dist-QAOA:
Initial Graph:

Optimized Result using Dist-
QAOA

Greedy Search: -70%            Dist-QAOA: -83%
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Distributed Quantum Long Short-Term Memory
Contribution
We introduce a Distributed Quantum Long Short-Term Memory (QLSTM) architecture that partitions variational 
quantum circuits across modular QPUs. This enables scalable, parallel execution of quantum-enhanced LSTM gates 
while preserving temporal modeling capacity.

Framework
The proposed system decomposes input vectors into subcomponents, each processed by a separate quantum 
module (QPU) executing a variational quantum circuit. These modular outputs are integrated into a QLSTM cell 
composed of quantum neural gate blocks (Split-QNNs), supporting distributed learning of sequential dynamics.

08/06/2025
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Result Analysis

Damped Harmonic Oscillator
We focus on a damped pendulum with 
parameters chosen to yield nontrivial oscillatory 
decay:
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Result Analysis

Nonlinear Autoregressive Moving Average Sequences (NARMA)

A representative example is the NARMA-2 relation:
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Distributed Photonic Quantum
Computing
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Hybrid Quantum Machine Learning

• Different between Continuous Variable (CV) and Qubit

Photonic QC:

Gate-based QC:



Hybrid Quantum Machine Learning

Feature Continuous-Variable (CV) Discrete-Variable (DV) Qubits

Encoding Type Analog quadratures (e.g., light field amplitudes) Binary superpositions of

Hilbert Space Infinite-dimensional Finite-dimensional

Scalability High via multiplexing (e.g., time/frequency modes) Challenging due to crosstalk and decoherence

HW Requirements Operates at room temperature; uses standard 
optical components

Requires cryogenic temperatures and specialized 
hardware

Noise Resilience Inherent robustness; Gaussian states offer some 
protection

Susceptible to decoherence; necessitates complex 
error correction

Error Correction Emerging schemes (e.g., GKP codes); still under 
development

Established protocols (e.g., surface codes, 
qLDPC); resource-intensive

Algorithm Maturity Fewer algorithms; active area of research Extensive algorithm library; well-established 
frameworks

Measurement Homodyne/heterodyne detection (Gussian); PNRD 
(non-Gussian); continuous outcomes Projective measurements; discrete outcomes

Use Cases Quantum sensing, communication, certain machine 
learning applications

Broad applications including cryptography, 
simulation, and general-purpose computing
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Hybrid Quantum Machine Learning

• Rethinking Hybrid Quantum-Classical Machine Learning in the Model 
Compression Perspective

QNN

08/06/2025



Hybrid Quantum Machine Learning

• Rethinking Hybrid Quantum-Classical Machine Learning in the Model 
Compression Perspective 

-60 % -60 %
-80 %
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Hybrid Quantum Machine Learning

• Rethinking Hybrid Quantum-Classical Machine Learning in the Model 
Compression Perspective

QNN

Problems:
(1) Partition Cost; (2) Large Noise in Communication Channel
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Hybrid Quantum Machine Learning with Photonic QC

Photonic QNNs integrate quantum mechanics and optical systems to enable scalable, noise-
resilient machine learning for quantum and classical data

Photonic Chip:

Yu, Shang, et al. "Shedding light on the future: Exploring quantum neural networks through optics."
Advanced Quantum Technologies (2024): 2400074.
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Preliminary: Photonic Quantum Neural Networks

• Distributed Photonic QNNs

QPU 1

QPU 2

(Proposed Architecture)
Distributed-Aware and No Need Microwave-Optical Transduction

Clements’ Decomposition
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Preliminary: Photonic Quantum Neural Networks

Configuration of
mapping model
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Result

Benchmark: Classical Model (Baseline)

Photonic QT with different bond dimensions

10 times compression

Chen et al., arXiv:2505.08474 08/06/2025



Result

Gate-based QT 1365 92.172 ± 0.35

Chen et al., arXiv:2505.08474 08/06/2025



Result

Noise Resilience

Chen et al., arXiv:2505.08474 08/06/2025



Conclusion

➢ Distributed Photonic QNNs: Hybrid training approach using photonic QNNs to generate 

weights for classical models, enabling efficient compression.

➢ Classical Inference: Offloads the most compute-intensive training phase to quantum 

hardware; inference runs classically on CPUs/GPUs for Quantum-HPC applications.

➢ High Efficiency: Achieves up to 90% parameter reduction with competitive accuracy, 

outperforming classical compression techniques.

➢ Noise Resilience: Noise analysis shows our photonic QNN framework maintains robust 

validation accuracy across practical photonic imperfections, demonstrating strong noise 

resilience.
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Future Work – Distributed Quantum HPC for Artificial Intelligence

Liu et al, ICLR 2025 

• Working on more complex and larger-parameter models — for example, fine-tuning LLMs.
• Using quantum computers for training and classical computers (CPU or GPU) for inference.
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ManufacturingFinTech
Defect Detection, 
Predictive Maintenance 
etc.

Credit Scoring, Fraud 
Detection etc.

Medical Diagnosis
Disease Diagnosis,  
Personalized Medicine 
etc.

Net Zero
Renewable Energy 
Forecasting, Pollution 
Control etc.

Future Work – Quantum for Humanity
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Than you for your time!

Any Question?
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