# A Scalable Software Framework for Distributed Quantum-HPC Integration: Resource-Oriented Orchestration and Workflow Optimization

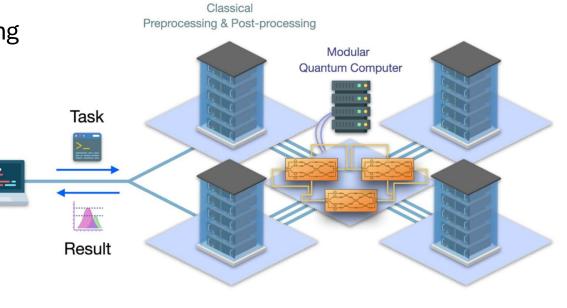
### **Presenter:**

Louis Chen @ Imperial College London Distributed Quantum Computing Group, Department of Electrical and Electronics Engineering

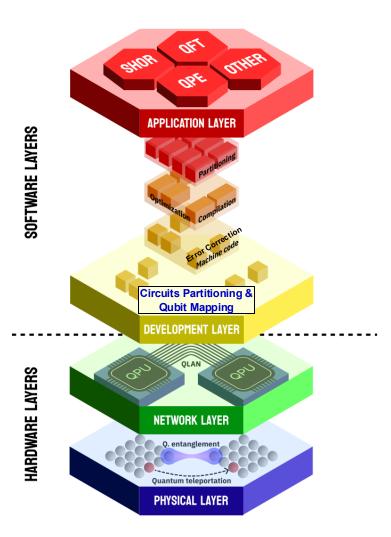
### **Co-Authors:**

Felix Burt (EEE, ICL) , Kin K. Leung (EEE, ICL) Collaboration:



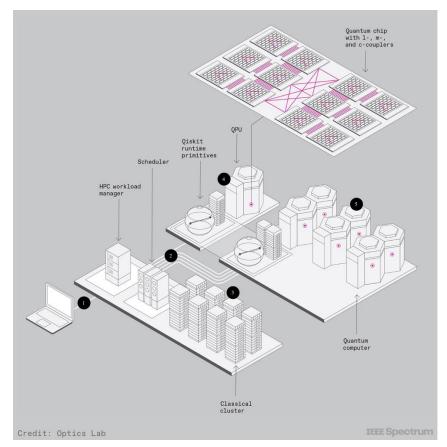


# Content



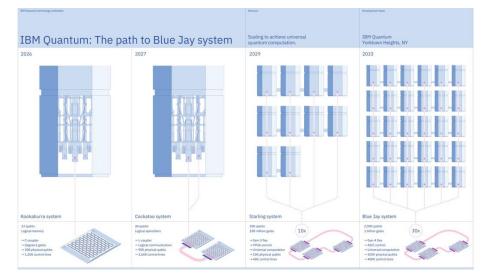
Barral, David, et al, Computer Science Review 57 (2025): 100747.

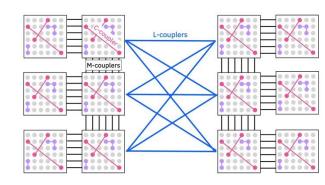
- Introduction for Distributed Quantum Computing and Quantum HPC
- Ideas of Distributed Quantum Computing
  - Circuit Partitioning in Distributed Quantum Computing
  - Resource Efficient Compilation for Distributed Quantum Computing
  - Distributed Photonic Quantum Computing
- Conclusion

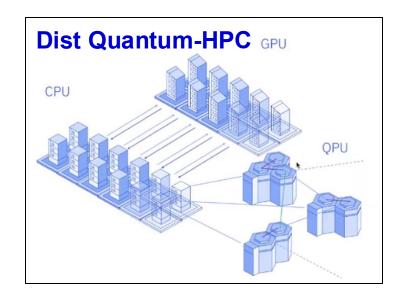


### What and Why Distributed Quantum Computing?

#### IBM Quantum (Superconducting Circuits – Microwave Controlled)

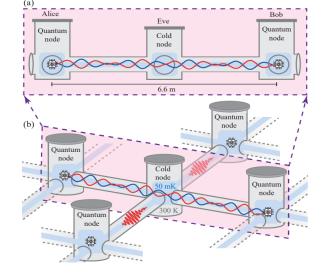






### Quantinuum (Ion Trap – Optical Controlled)





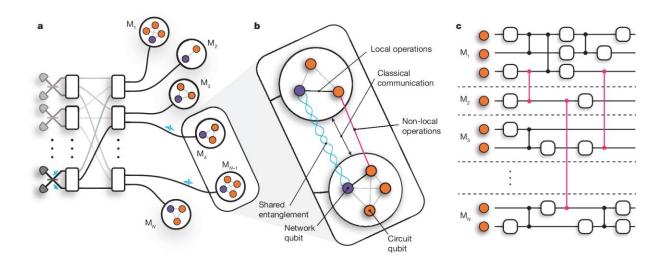


Renger, M., et al. "Cryogenic microwave link for quantum local area networks." *arXiv preprint arXiv:2308.12398* (2023).

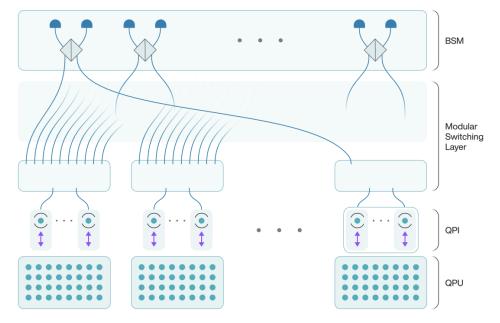
### **Quantum-HPC and Distributed Quantum Computing**

#### **Motivation**

Distributed quantum computing offers a scalable pathway to extend QAOA beyond the limitations of individual NISQ devices by parallelising computation across modular quantum processors—enabling practical solutions to large-scale optimisation problems.



Main, D., et al. "Distributed quantum computing across an optical network link." *Nature* (2025): 1-6.



#### Distributed Quantum Error Correction Code

Sutcliffe, Evan, et al, *arXiv preprint arXiv:2501.14029* (2025).

# **Circuit Partition in Distributed Quantum Computing**

- Quantum advantage requires large numbers of qubits (~  $10^6$  for Shor's algorithm [Gidney, arXiv:2505.15917, 2025]).
- Inherent scaling challenges indicate we need modular/distributed quantum computing to reach these numbers [Van Meter, Computer 49, IEEE, 2016].
- Running large programs across multiple quantum processing units (QPUs) requires *partitioning* of logical quantum circuits.
- QPUs are linked via quantum network dedicated to sharing entanglement.
- Slow and noisy inter-QPU links identify shared entanglement (*e-bits*) as the partitioning objective [Caleffi et al., Computer Networks 254, ScienceDirect, 2024].

# **Challenges for Partitioning Distributed Quantum Circuits**

• Circuit partitioning with minimal entanglement has been reduced to various problems. These are typically NP-hard problems [Andrés-Martínez and Heunen, PRA 100, APS, 2019], and often suffer from a lack of generality (limitations on qubit/gate teleportation).

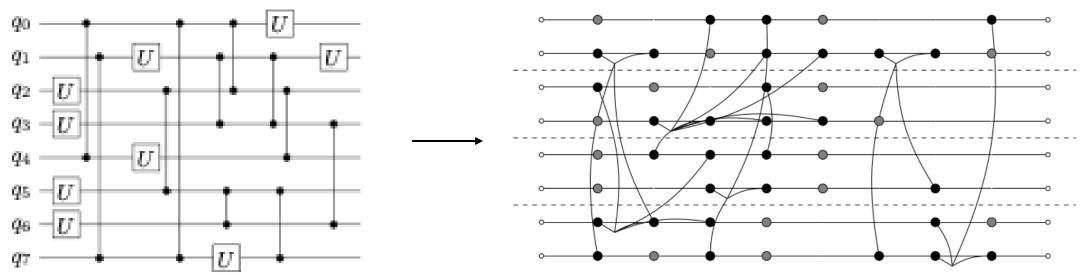
*Routing methods* try and find the optimal teleportation paths for each qubit in order to cover all two-qubit gates.

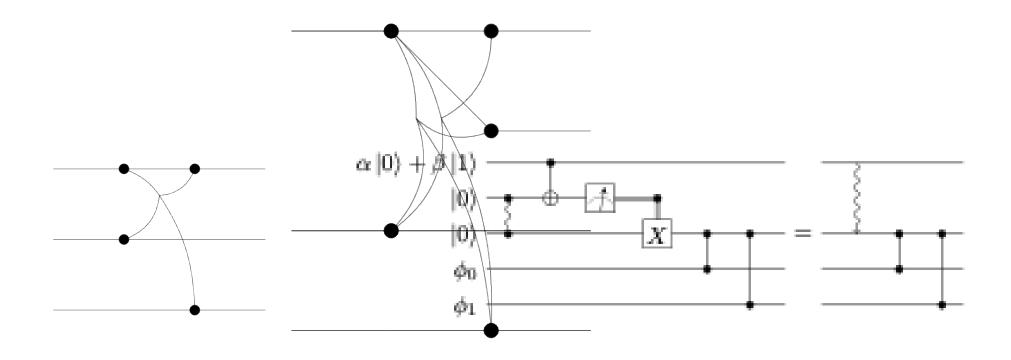
*Partitioning methods* statically assign qubits to modules in ways that minimise the number of gate teleportations.

- We identified two key challenges to solving this problem effectively:
  - 1. **Problem formulation**: we need to formulate a problem that is general enough to consider routing and partitioning together.
  - 2. Solution techniques: we need to reduce the problem complexity without losing too much to enable fast, effective solutions.

# **Temporal Hypergraph Partitioning**

• Blending existing ideas of hypergraph partitioning [Andrés-Martínez and Heunen, PRA 100, APS, 2019], and time-sliced partitioning [Baker et al., 'Time-Sliced Quantum Circuit Partitioning for Modular Architectures', Computing Frontiers 17, ACM, 2020], we have developed a representation of quantum circuits as hypergraphs extended in time [Burt et al., QCE, IEEE, 2025][Burt et al., arXiv:2503.19082, 2025].



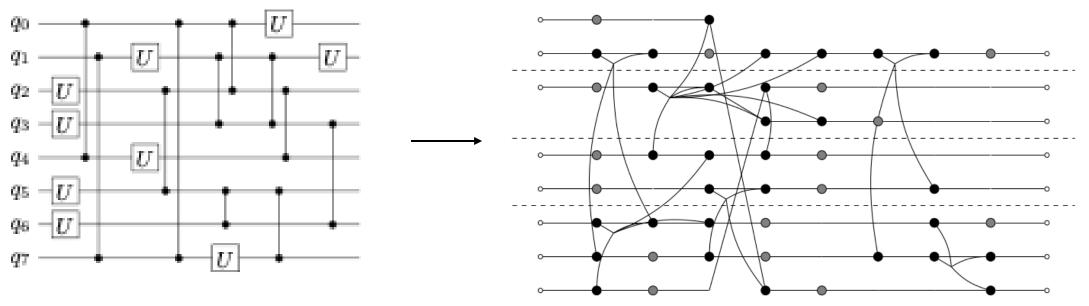


### IMPERIAL

08/06/2025

# **Temporal Hypergraph Partitioning**

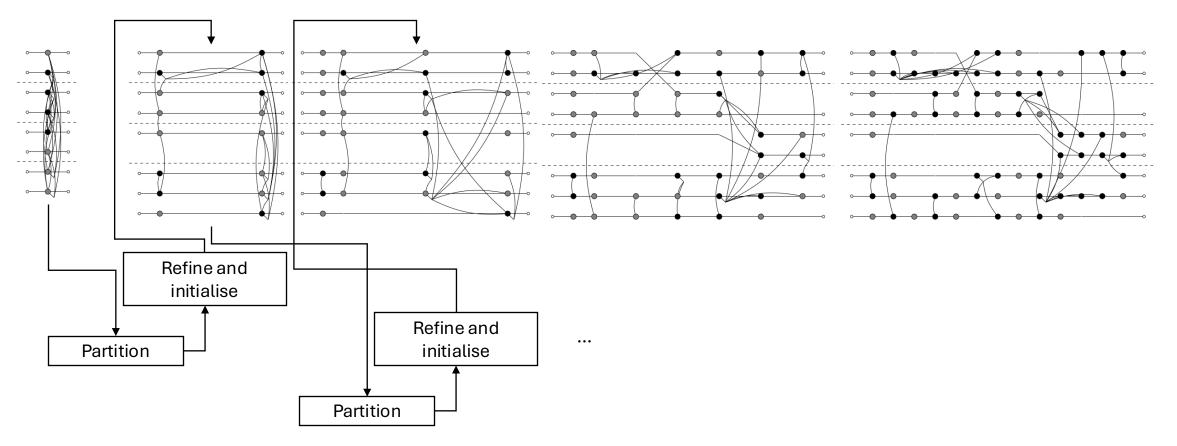
• Blending existing ideas of hypergraph partitioning [Andrés-Martínez and Heunen, PRA 100, APS, 2019], and time-sliced partitioning [Baker et al., 'Time-Sliced Quantum Circuit Partitioning for Modular Architectures', Computing Frontiers 17, ACM, 2020], we have developed a representation of quantum circuits as hypergraphs extended in time [Burt et al., QCE, IEEE, 2025][Burt et al., arXiv:2503.19082, 2025].

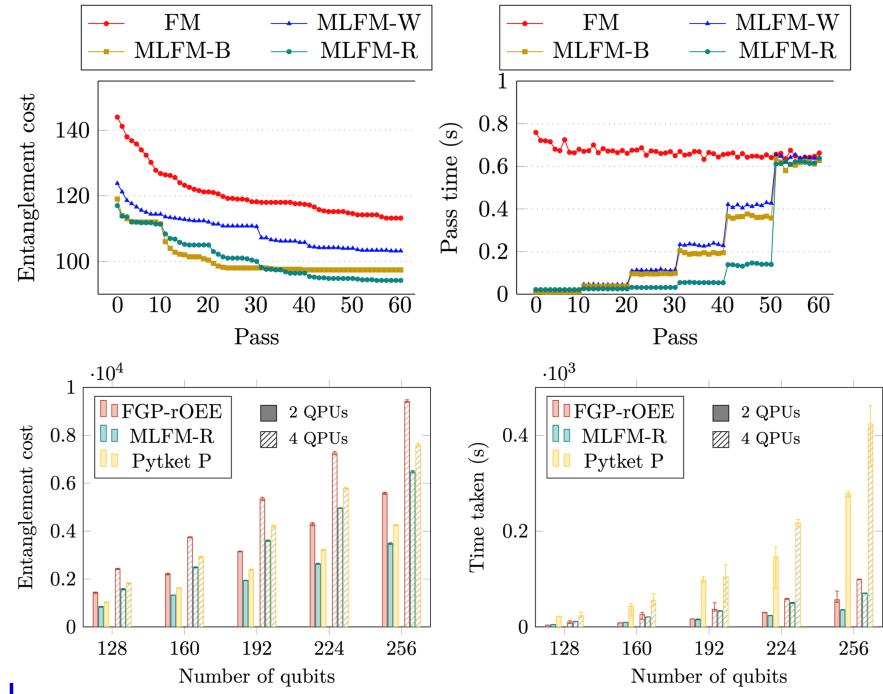


• A partitioned hypergraph of this form tells us exactly how many end-toend e-bits at each time step of the circuit.

# **Multilevel Partitioning**

- Problem hypergraphs can be large for deep circuits.
- We use a *multilevel partitioning* framework to enhance the efficiency of heuristic solvers.



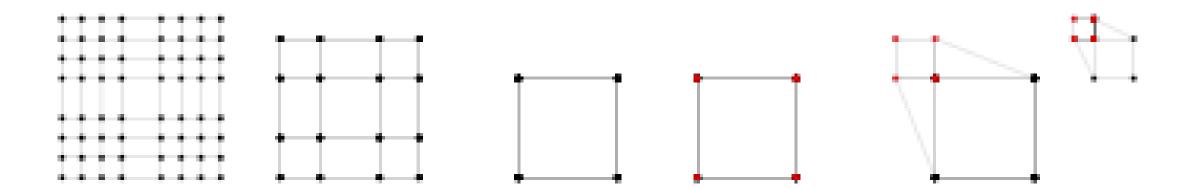


IMPERIAL

08/06/2025

# **Partition over Larger Networks**

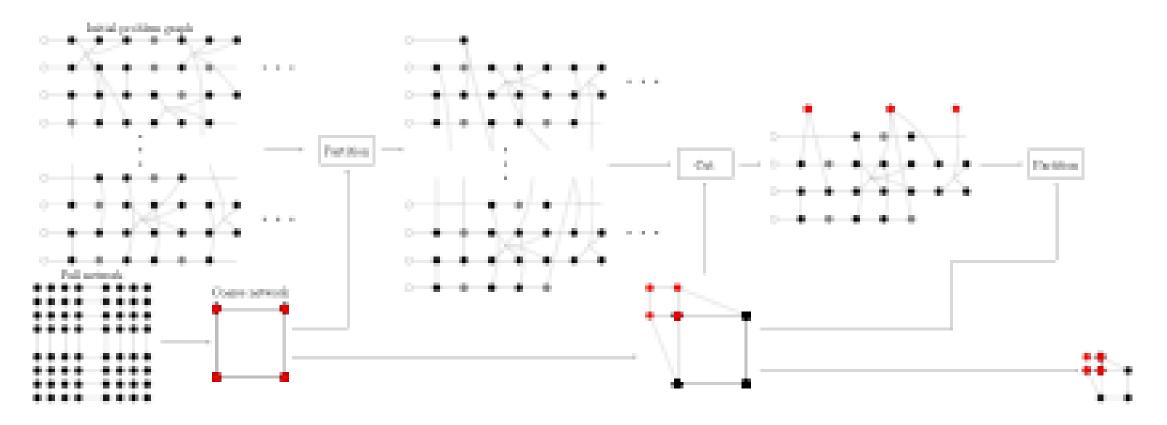
- Entanglement distribution paths become significant over larger networks.
- Partitioners must account for auxiliary entanglement costs of generating end-to-end ebits (swapping, purification etc.).
- We can incorporate this into our objective, for some additional complexity.
- To mitigate this, we can employ coarsening on the network level.





# **Partition over Larger Networks**

- Generate series of coarsened representations of network.
- Partition large circuit over coarse network.
- Cut circuits and merge *external* nodes according to their partition.



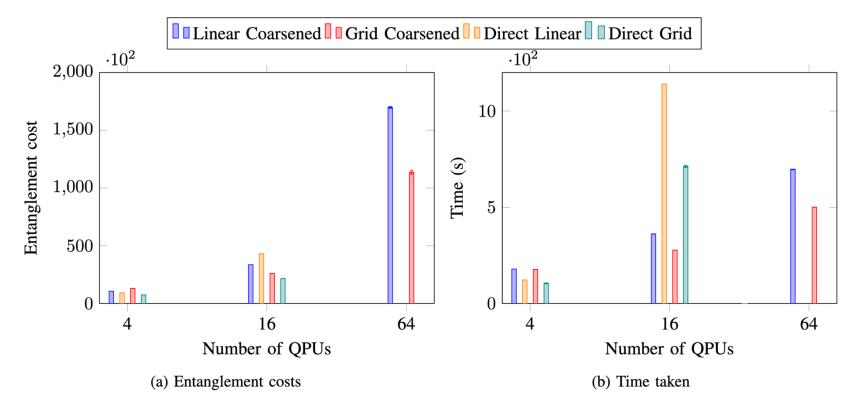


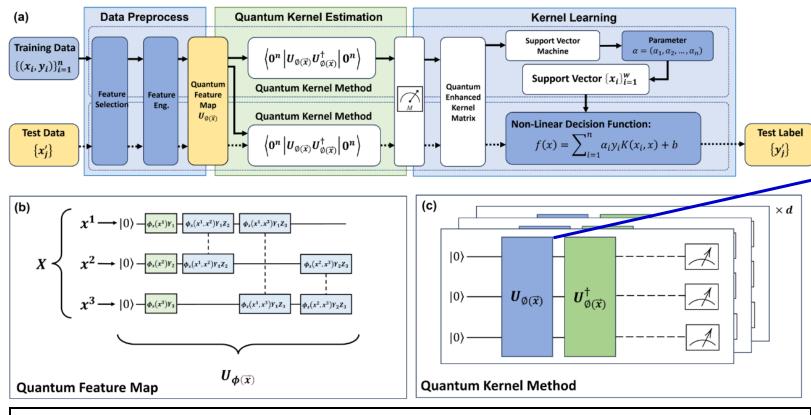
Fig. 12: Comparison of partitioning over coarsened networks and direct partitioning for grid and linear networks. We use network coarsening factors 2, 4 and 8, for 4, 15 and 64 QPUs, respectively. A 256 qubit CP-fraction circuit with 0.5 two-qubit gate proportion is used.

Resource Efficient Compilation for Distributed Quantum Computing



# **Gate-Based NISQ Quantum Algorithms**

Gate-based Quantum Machine Learning Algorithm



**Kernel** A commonly used quantum kernel in QSVM is the Gaussian kernel, adapted for quantum computing:

$$K(x_i, x_j) = \exp\left(-\frac{|x_i - x_j|^2}{2\sigma^2}\right)$$
(7)

where  $x_i$  and  $x_j$  are input data vectors and  $\sigma$  denotes the kernel's width parameter.

### Unitary Gate:

$$U_{\oplus}(x) = \exp\left(i\sum_{S\subseteq[n]}\phi_S(x)\prod_{k\in S}Z_k\right)$$

In this expression, S represents either the k-th element or a set of k elements drawn from n, which generally indicates the connectivity among various qubits or data points. The indices k range from 1 to n, and  $Z_k$  represents the application of  $R_Z$  operations

Chen, Kuan-Cheng, et al. "Quantum-Enhanced Support Vector Machine for Large-Scale Multi-class Stellar Classification." International Conference on Intelligent Computing. Singapore: Springer Nature Singapore, 2024.

### Validation of Large-Scale Quantum Computing

#### Example: Quantum Machine Learning Algorithm:

Quantum-enhanced Support Vector Machines (SVMs) leverage quantum computing to achieve exponential speedups in training and classification tasks for SVMs, addressing the computational challenges faced in large-scale big-data applications.

#### Cost of Quantum Circuit Simulation with Naïve State Vector on CPU:

>Exponential growth with an increase in qubits

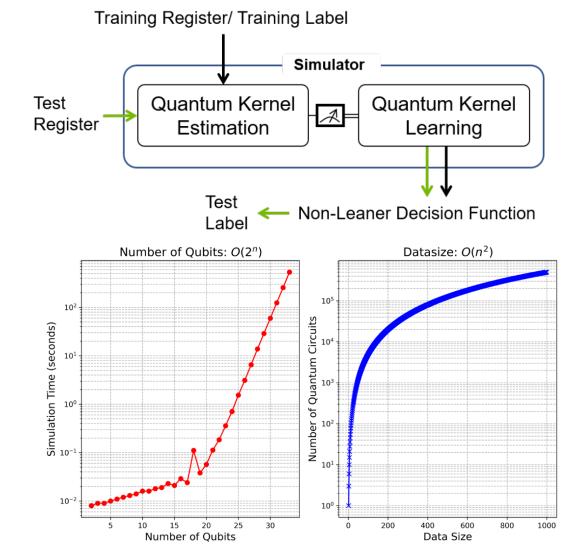
- HPC with 3 PB memory can only simulate 47 qubits arbitrary circuit.
- Simulate one 40-qubit circuit for QSVM takes roughly one day.

#### >Quadratic growth with an increase in data size

Insufficient training data will affect the model's performance.

#### Solution for Large-Scale Qubit Systems with Large Datasets

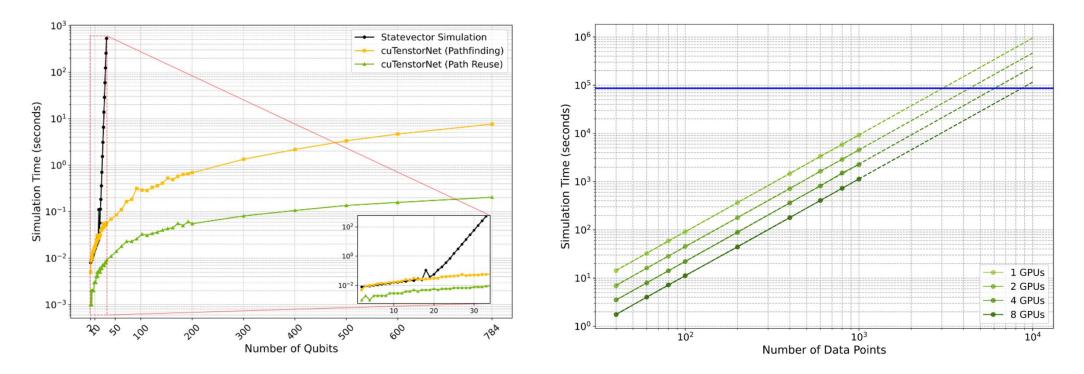
- CuQuantum SDK with cuTensorNet approach can reduce the computational complex for simulating large-scale quibt system (toward a thousand of qubits).
- Multi-GPU with Message Passing Interface (MPI) in DGX clusters allows for efficient scaling of dataset in QSVMs.



Chen, Kuan-Cheng, et al. "Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks." *Machine Learning: Science and Technology* (2024).

### Validation of Large-Scale Quantum Computing

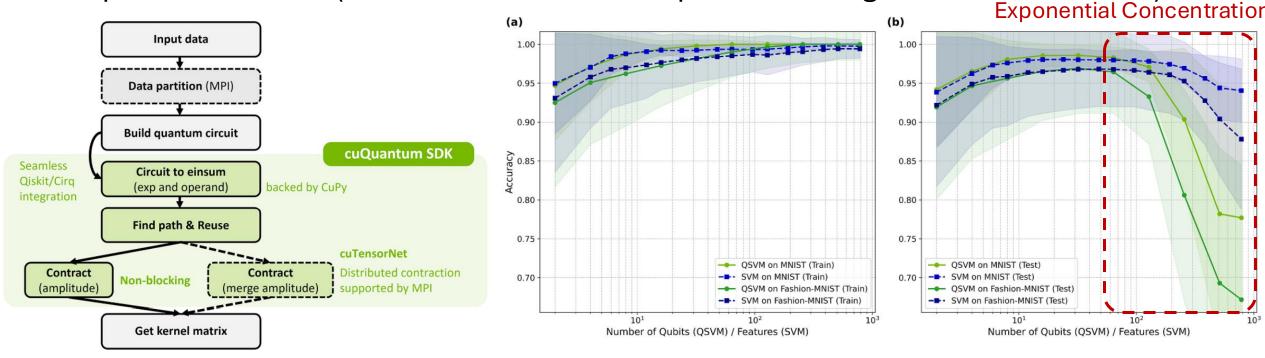
- **Reduction in Computational Complexity:** The **tensor network** simulation workflow, enhanced by Nvidia GPU, drastically reduces the computational complexity from exponential in the number of qubits  $O(2^n)$  to polynomial  $O(n^2)$ , enabling more efficient processing of large datasets and complex quantum circuit simulations.
- Multi-GPU Execution and Efficiency: Utilizing multi-GPU configurations, the cuTensorNet framework achieves significant computational speedups by employing strategies such as path reuse and asynchronous tensor contractions, which minimize delays and optimize GPU resource utilization, resulting in a substantial increase in throughput over traditional CPU-based methods.
- Scalability with Multi-GPU Systems: The integration of cuTensorNet with MPI on multi-GPU systems demonstrates strong linear scalability, effectively decreasing the computation time for QSVM simulations across large datasets. This approach allows for real-time processing enhancements and fosters the practical application of quantum simulations in real-world scenarios.



Chen, Kuan-Cheng, et al. "Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks." *Machine Learning: Science and Technology* (2024).

# Validation of Large-Scale Quantum Computing

- Validating the Quantum Kernel Method Using Tensor-Network Simulation with NVIDIA Multi-GPU Processing
- Gate-based quantum machine learning (QML) algorithms can suffer from barren plateaus or exponential concentration—leading to inefficient training—as the number of qubits increases. (the case here follows Superconducting Circuit Architecture)

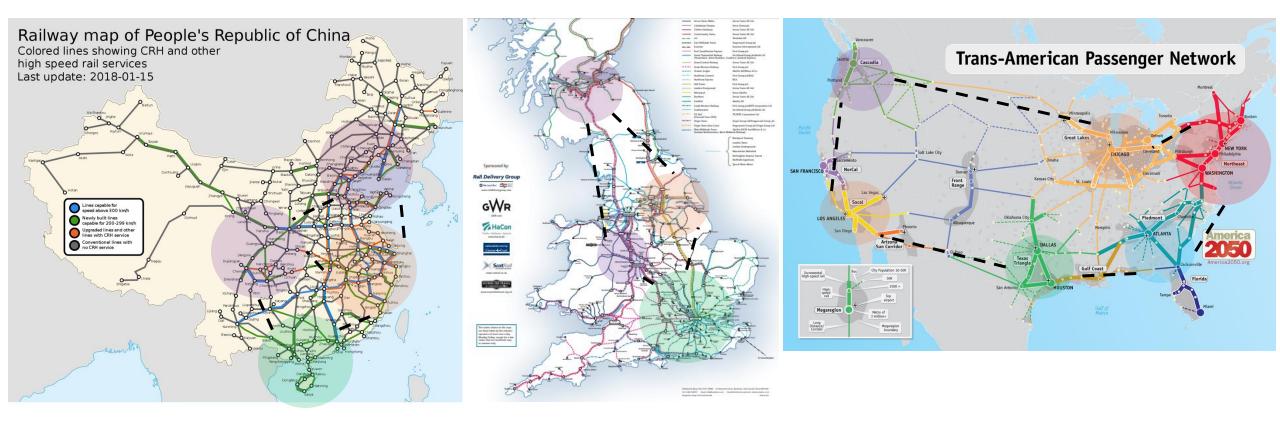


Chen, Kuan-Cheng, et al. "Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks." Machine Learning: Science and Technology (2024).

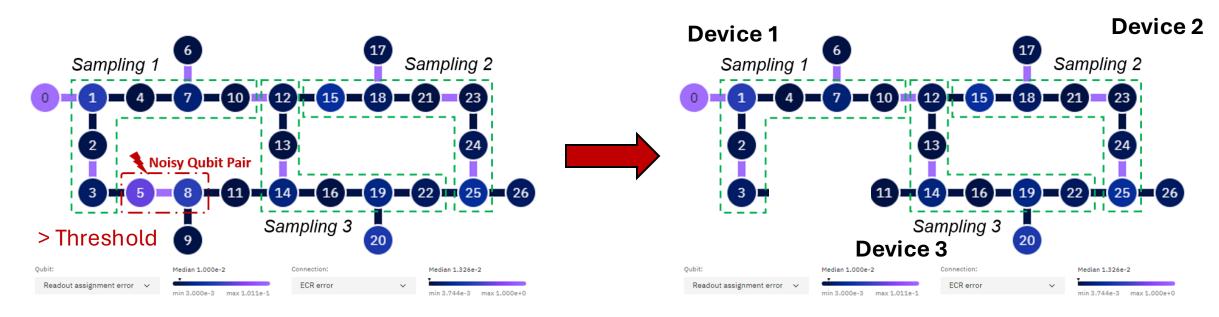
### **Motivation of Applying DQC for QAOA**

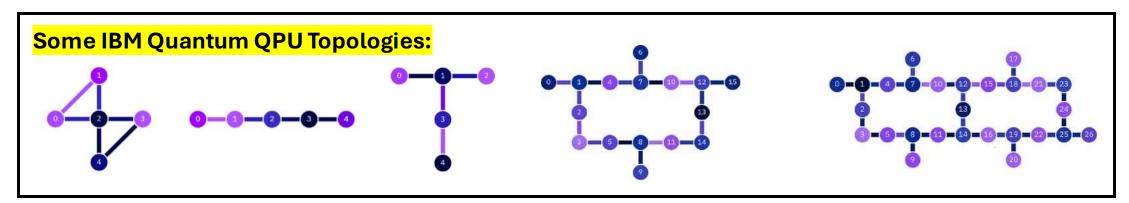
### The real-world problem:

In real-world optimization problems, data is often not homogeneously distributed. For example, in railway optimization, individual areas or regions may have dense railway networks, whereas inter-regional connections often rely on a few main routes. This formulation aligns well with the problem formulation of distributed quantum computing, where tasks can be divided based on varying data densities.



### **Noise-Aware Distributed QAOA Compilation Strategy**

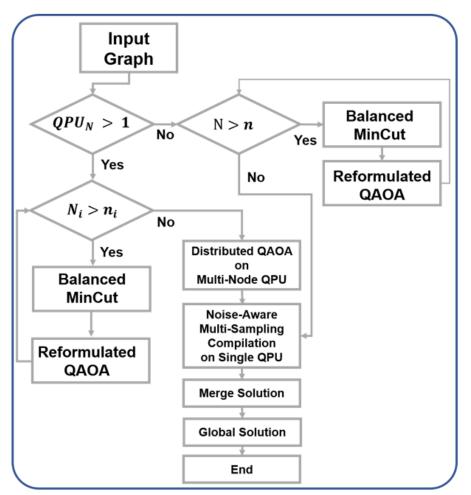




Chen et al., IEEE QCE 25'

### **QAOA Algorithms on Noisy Hardware**

This Noise-Aware Distributed QAOA algorithm optimally partitions large graphs based on QPU capacity and node size, applying balanced MinCut (based on problem-informed formulation, for example city distribution) and reformulated QAOA strategies to ensure efficient multi-node execution with noise-aware compilation.



Algorithm 1 Noise-Aware Distributed QAOA **Require:** Graph G = (V, E), Threshold  $\eta$ , Node Capacity  $n_i$ , QPU Capacity  $QPU_N$ **Ensure:** Global Solution S 1: **Procedure** Distributed-OAOA( $G, \eta, n_i, QPU_N$ ): 2: if  $QPU_N > 1$  then if  $|V| > n_i$  then Perform Balanced MinCut on G 4: else 5: Perform Reformulated QAOA on G 6: end if 7: 8: else if  $|V| > \eta$  then 9: Perform Balanced MinCut on G 10: else 11: Perform Reformulated QAOA on G 12: end if 13: 14: end if 15: if  $|V| < \eta$  then Execute Distributed QAOA on Multi-Node QPU 16: Apply Noise-Aware Multi-Sampling Compilation on 17: Single OPU Merge Partial Solutions from QAOA 18: Obtain Global Solution S19: 20: end if 21: **return** Global Solution S

### **Noise-Aware Distributed QAOA Compilation Strategy**

### **Research Framework in this work:**

#### A. Step 1: Threshold Filtering

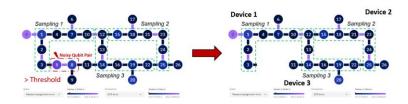
The initial step in our noise-aware compilation strategy involves defining an error rate threshold  $\eta$  for both singlereadout error rates and two-qubit gate error rates. Each qubit  $q_i$  with a single-readout error rate  $e_i$  and each two-qubit gate  $g_{ij}$  between qubits  $q_i$  and  $q_j$  with an error rate  $e_{ij}$  are evaluated against this threshold:

- $q_i$  is valid if  $e_i < \eta$
- $g_{ij}$  is valid if  $e_{ij} < \eta$

Using these criteria, we construct a subgraph G' from the original QPU graph G by retaining only the nodes and edges that meet the error rate criteria:

G' = (Q', E') $Q' = \{q_i \in Q \mid e_i < \eta\}$ 

 $E' = \{g_{ij} \in E \mid e_{ij} < \eta\}$ 



B. Step 2: Noise-Aware Symmetrical Sampling

For a QAOA problem requiring n qubits, we identify k symmetrical sampling areas. Each sampling area is a subgraph  $S_k$  containing n qubits. The number of symmetrical sampling areas k is determined by the number of valid qubits and gates in the filtered subgraph G'. To ensure optimal performance, we prioritize sampling areas with the highest fidelity. The fidelity of a block is defined as the product of the readout errors of the selected qubits and the two-qubit gate errors among them:

Fidelity 
$$= \prod_{i=1}^{n} e_i \times \prod_{j=1}^{m} e_{ij}$$

We evaluate the fidelity for each potential sampling area and select k subgraphs  $S_1, S_2, \ldots, S_k$  with the highest fidelity, ensuring each subgraph  $S_i$  contains n qubits. Each subgraph  $S_i$  maintains symmetry and is topologically equivalent to the other subgraphs.

------

Sampling 4

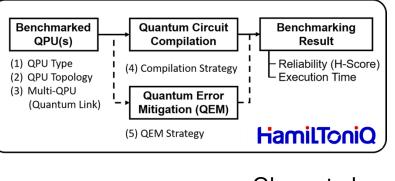
Sampling 6



For each symmetrical sampling area  $S_i$ :

- 1) Map the QAOA circuit to the n qubits in  $S_i$ .
- 2) Execute the QAOA circuit on each  $S_i$  independently.
- 3) Collect results from all sampling areas to improve the robustness and reliability of the computations.



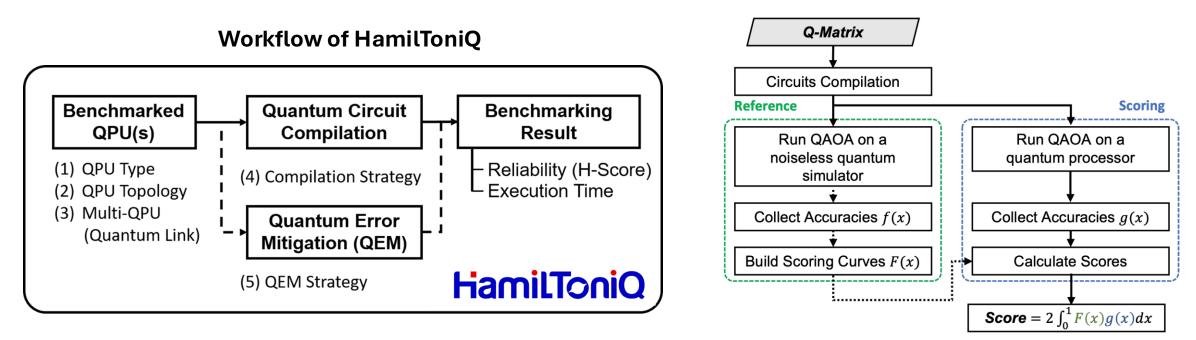


Chen et al., IEEE QCE 25'

### HamilToniQ: Application-Oriented QPU Benchmarking Toolkit

- Include all factors (QPU, compilation, QEM, ...).
- H-Scores are comparable.
- Automatic, easy to use.



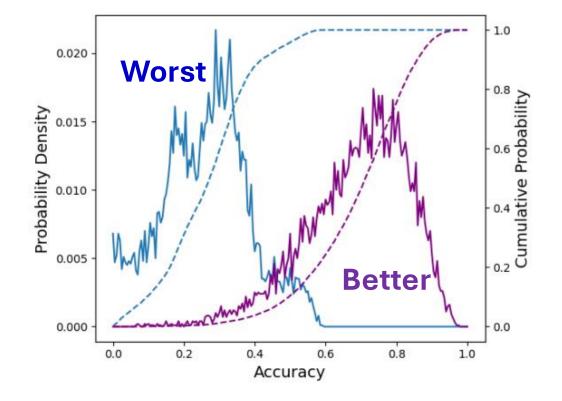


Xu, Xiaotian, Kuan-Cheng Chen, and Robert Wille. "HamilToniQ: An Open-Source Benchmark Toolkit for Quantum Computers." *IEEE QCE'24* 

### HamilToniQ: Application-Oriented QPU Benchmarking Toolkit

Math Behind the H-Score:

$$C = 2\int_0^1 F(x)f(x)dx + 2\int_0^1 F(x)\psi(x)dx$$



| ibm_cairo      | 0.96 | 0.81 | 0.69 | 0.51 | 0.37          | 0.30 | 0.25 | 0.21 | 0.17 |
|----------------|------|------|------|------|---------------|------|------|------|------|
| ibm_lagos      | 0.94 | 0.85 | 0.72 | 0.57 | 0.44          | 0.35 | 0.29 | 0.23 | 0.19 |
| ibm_perth      | 0.94 | 0.78 | 0.65 | 0.46 | 0.34          | 0.27 | 0.23 | 0.20 | 0.16 |
| ibm_nairobi    | 0.94 | 0.74 | 0.63 | 0.44 | 0.35          | 0.26 | 0.22 | 0.19 | 0.16 |
| ibm_guadalupe  | 0.94 | 0.70 | 0.58 | 0.42 | 0.33          | 0.27 | 0.23 | 0.20 | 0.17 |
| ibm_auckland   | 0.92 | 0.73 | 0.58 | 0.43 | 0.32          | 0.26 | 0.23 | 0.19 | 0.16 |
| ibm_athens     | 0.88 | 0.63 | 0.46 | 0.36 | 0.30          | 0.25 | 0.23 | 0.20 | 0.18 |
| ibm_burlington | 0.86 | 0.59 | 0.44 | 0.32 | 0.27          | 0.23 | 0.21 | 0.18 | 0.16 |
|                | 1    | 2    | 3    | 4    | 5<br>n_layers | 6    | 7    | 8    | 9    |

Benchmarking results on several IBM QPUs with 5 qubits.

Xu, Xiaotian, Kuan-Cheng Chen, and Robert Wille. "HamilToniQ: An Open-Source Benchmark Toolkit for Quantum Computers." *IEEE QCE'24 Submitted* 

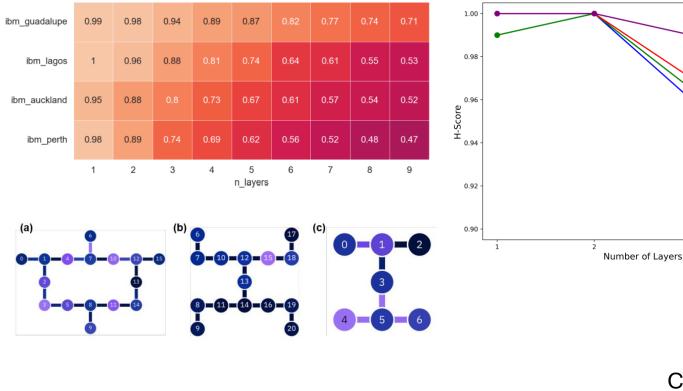
### HamilToniQ: Application-Oriented QPU Benchmarking Toolkit

### What HamilToniQ Toolkit can benchmark?

#### (1) QPUs on quantum cloud server

| ibm_cairo      | 0.95 | 0.89 | 0.77 | 0.62 | 0.46          | 0.33 | 0.23 | 0.15 | 0.09 |
|----------------|------|------|------|------|---------------|------|------|------|------|
| ibm_kyoto      | 0.94 | 0.81 | 0.63 | 0.48 | 0.29          | 0.18 | 0.10 | 0.05 | 0.03 |
| ibm_lagos      | 0.92 | 0.88 | 0.77 | 0.61 | 0.46          | 0.29 | 0.20 | 0.12 | 0.07 |
| ibm_athens     | 0.90 | 0.82 | 0.60 | 0.40 | 0.23          | 0.12 | 0.06 | 0.03 | 0.02 |
| ibm_perth      | 0.89 | 0.78 | 0.63 | 0.48 | 0.27          | 0.16 | 0.09 | 0.05 | 0.03 |
| ibm_nairobi    | 0.89 | 0.78 | 0.61 | 0.46 | 0.30          | 0.18 | 0.10 | 0.06 | 0.03 |
| ibm_guadalupe  | 0.86 | 0.82 | 0.64 | 0.48 | 0.28          | 0.16 | 0.06 | 0.03 | 0.01 |
| ibm_auckland   |      | 0.68 | 0.47 | 0.29 | 0.13          | 0.06 | 0.03 | 0.01 | 0.01 |
| ibm_burlington | 0.81 | 0.63 | 0.39 | 0.21 | 0.09          | 0.04 | 0.02 | 0.01 | 0.00 |
| ibm_london     | 0.79 | 0.69 | 0.46 | 0.28 | 0.15          | 0.08 | 0.04 | 0.02 | 0.01 |
| 5q_v1          | 0.76 | 0.59 | 0.37 | 0.21 | 0.10          | 0.05 | 0.02 | 0.01 | 0.01 |
|                | 1    | 2    | 3    | 4    | 5<br>n_layers | 6    | 7    | 8    | 9    |

#### (2) QPU Topology



(3) Quantum Error Mitigation



No QEM and DD

← QEM ← DD ← QEM+DD

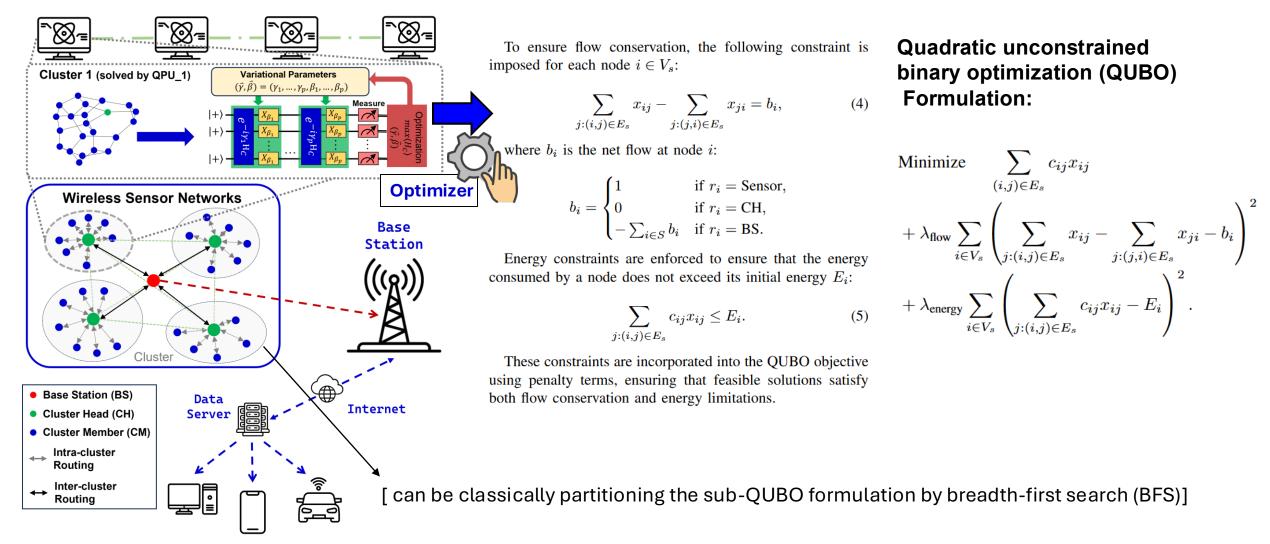
Xu, Xiaotian, Kuan-Cheng Chen, and Robert Wille. "HamilToniQ: An Open-Source Benchmark Toolkit for Quantum Computers." *IEEE QCE'24 Submitted* 

#### IMPERIAL

05/06/2025

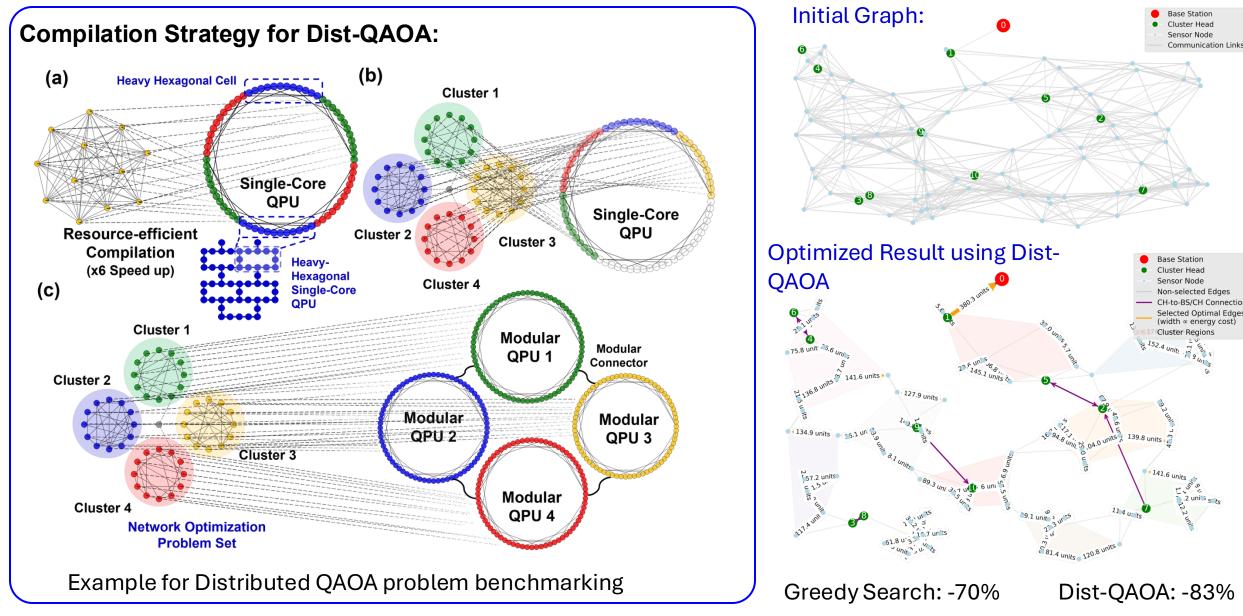
### **Task Partition Perspective –**

Application to solve large-scale wireless communication network problems



05/06/2025

### **Solving Large-Scale Wireless Communication Network Problems**



### IMPERIAL

#### 08/06/2025

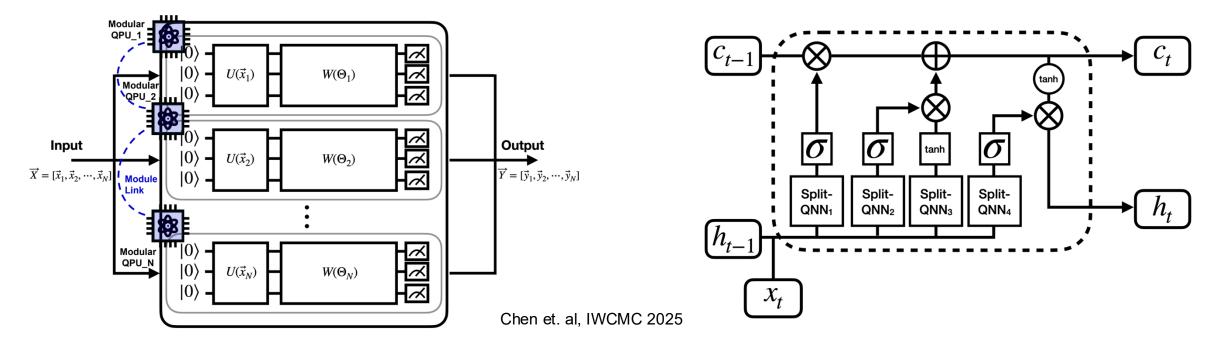
### **Distributed Quantum Long Short-Term Memory**

#### Contribution

We introduce a Distributed Quantum Long Short-Term Memory (QLSTM) architecture that partitions variational quantum circuits across modular QPUs. This enables scalable, parallel execution of quantum-enhanced LSTM gates while preserving temporal modeling capacity.

#### Framework

The proposed system decomposes input vectors into subcomponents, each processed by a separate quantum module (QPU) executing a variational quantum circuit. These modular outputs are integrated into a QLSTM cell composed of quantum neural gate blocks (Split-QNNs), supporting distributed learning of sequential dynamics.



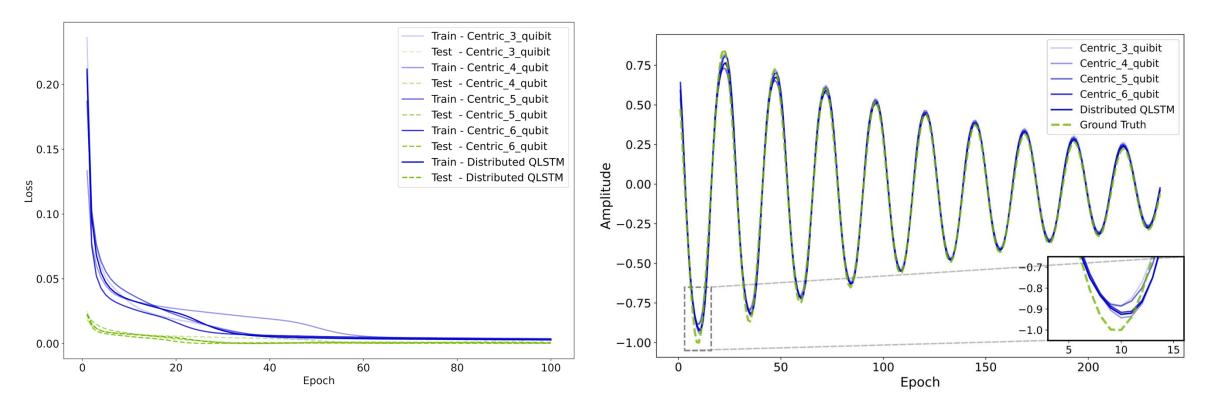
### **Result Analysis**

### **Damped Harmonic Oscillator**

We focus on a damped pendulum with parameters chosen to yield nontrivial oscillatory decay:  $d^2\theta$   $h d\theta$  a

$$\frac{d^{2}\theta}{dt^{2}} + \frac{\theta}{m}\frac{d\theta}{dt} + \frac{g}{L}\sin(\theta) = 0.$$

| Model                   | R-square | Testing Epoch Convergence |
|-------------------------|----------|---------------------------|
| Centric QLSTM (3 qubit) | 0.9898   | 81                        |
| Centric QLSTM (4 qubit) | 0.9913   | 68                        |
| Centric QLSTM (5 qubit) | 0.9938   | 38                        |
| Centric QLSTM (6 qubit) | 0.9903   | 27                        |
| Distributed QLSTM       | 0.9936   | 31                        |



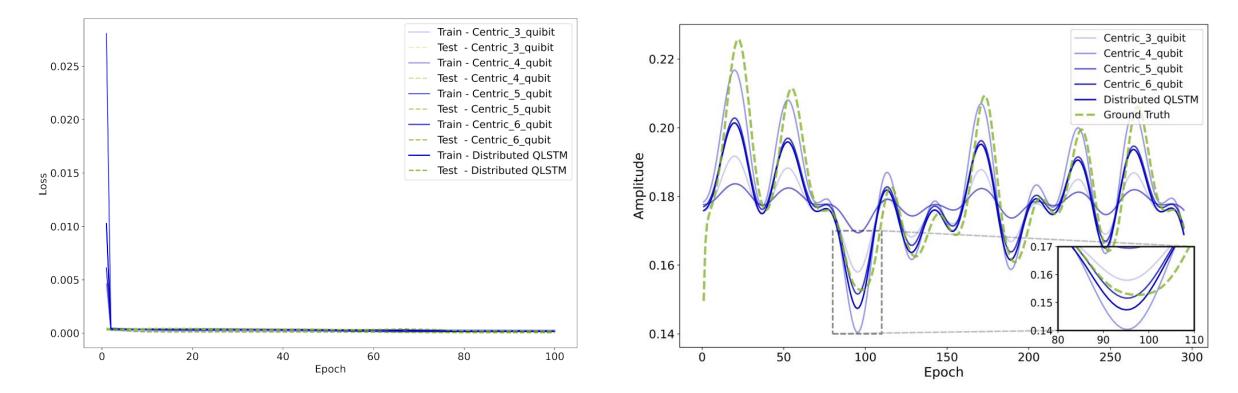
### **Result Analysis**

### Nonlinear Autoregressive Moving Average Sequences (NARMA)

A representative example is the NARMA-2 relation:

$$y_{t+1} = 0.4 y_t + 0.4 y_t y_{t-1} + 0.6 u_t^3 + 0.1$$

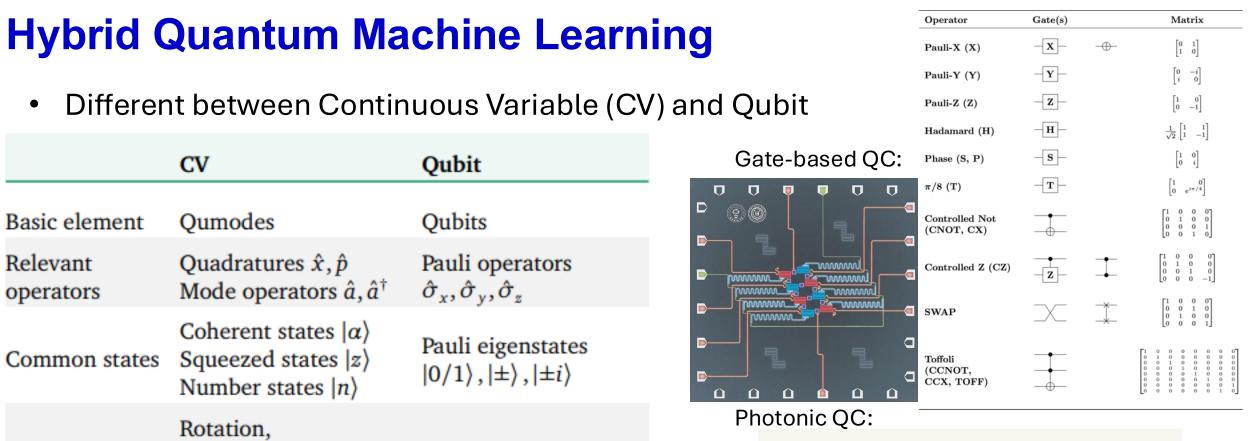
| Model                   | R-square | Testing Epoch Convergence |
|-------------------------|----------|---------------------------|
| Centric QLSTM (3 qubit) | 0.5477   | 2                         |
| Centric QLSTM (4 qubit) | 0.8611   | 2                         |
| Centric QLSTM (5 qubit) | 0.2651   | 2                         |
| Centric QLSTM (6 qubit) | 0.7799   | 2                         |
| Distributed QLSTM       | 0.7523   | 2                         |

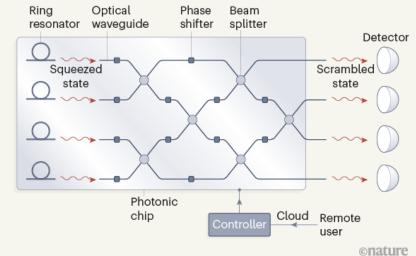


# Distributed Photonic Quantum Computing



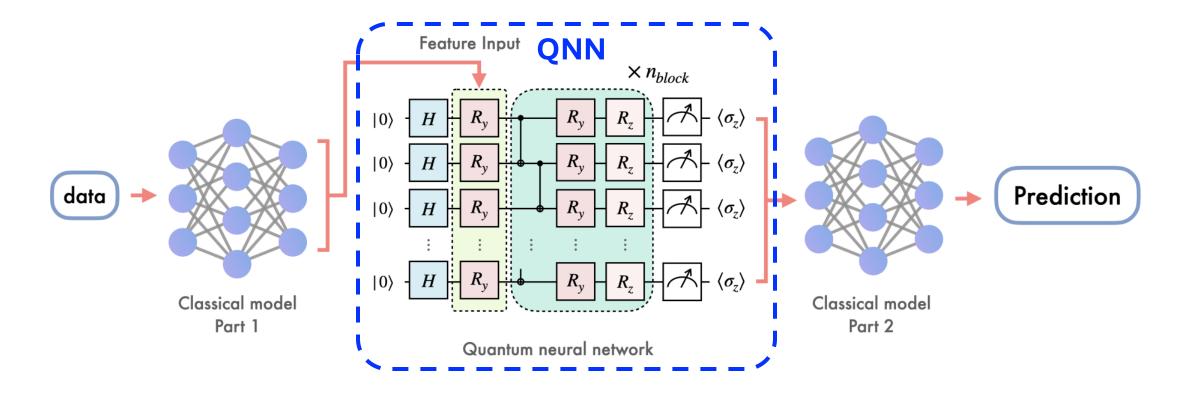
| Differer               | nt between Contin                                                                                                                                   | uous Variable (C)                                                                                    |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Differen               |                                                                                                                                                     | uous variable (C                                                                                     |
|                        | CV                                                                                                                                                  | Qubit                                                                                                |
| Basic element          | Qumodes                                                                                                                                             | Qubits                                                                                               |
| Relevant<br>operators  | Quadratures $\hat{x}, \hat{p}$<br>Mode operators $\hat{a}, \hat{a}^{\dagger}$                                                                       | Pauli operators $\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z$                                     |
| Common states          | Coherent states $ \alpha\rangle$<br>Squeezed states $ z\rangle$<br>Number states $ n\rangle$                                                        | Pauli eigenstates $ 0/1\rangle,  \pm\rangle,  \pm i\rangle$                                          |
| Common gates           | Rotation,<br>Displacement,<br>Squeezing,<br>Beamsplitter, Cubic<br>Phase                                                                            | Phase shift,<br>Hadamard, CNOT,<br>T-Gate                                                            |
| Common<br>measurements | Homodyne $ x_{\phi}\rangle\langle x_{\phi} $ ,<br>Heterodyne $\frac{1}{\pi} \alpha\rangle\langle\alpha $ ,<br>Photon-counting $ n\rangle\langle n $ | Pauli eigenstates<br>$ 0/1\rangle\langle 0/1 ,  \pm\rangle\langle \pm ,  \pm i\rangle\langle \pm i $ |
|                        |                                                                                                                                                     |                                                                                                      |



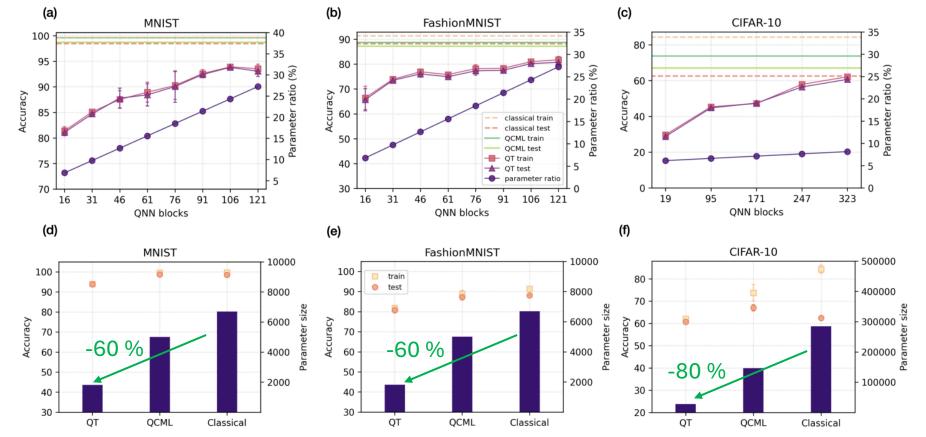


| Feature            | Continuous-Variable (CV)                                                         | Discrete-Variable (DV) Qubits                                                        |  |  |
|--------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Encoding Type      | Analog quadratures (e.g., light field amplitudes)                                | Binary superpositions of                                                             |  |  |
| Hilbert Space      | Infinite-dimensional                                                             | Finite-dimensional                                                                   |  |  |
| Scalability        | High via multiplexing (e.g., time/frequency modes)                               | Challenging due to crosstalk and decoherence                                         |  |  |
| HW Requirements    | <b>Operates at room temperature</b> ; uses standard optical components           | Requires cryogenic temperatures and specialized hardware                             |  |  |
| Noise Resilience   | <b>Inherent robustness</b> ; Gaussian states offer some protection               | Susceptible to decoherence; necessitates complex error correction                    |  |  |
| Error Correction   | Emerging schemes (e.g., GKP codes); still under development                      | <b>Established protocols</b> (e.g., surface codes, qLDPC); resource-intensive        |  |  |
| Algorithm Maturity | Fewer algorithms; active area of research                                        | <b>Extensive algorithm library</b> ; well-established frameworks                     |  |  |
| Measurement        | Homodyne/heterodyne detection (Gussian); PNRD (non-Gussian); continuous outcomes | Projective measurements; discrete outcomes                                           |  |  |
| Use Cases          | Quantum sensing, communication, certain machine learning applications            | Broad applications including cryptography, simulation, and general-purpose computing |  |  |

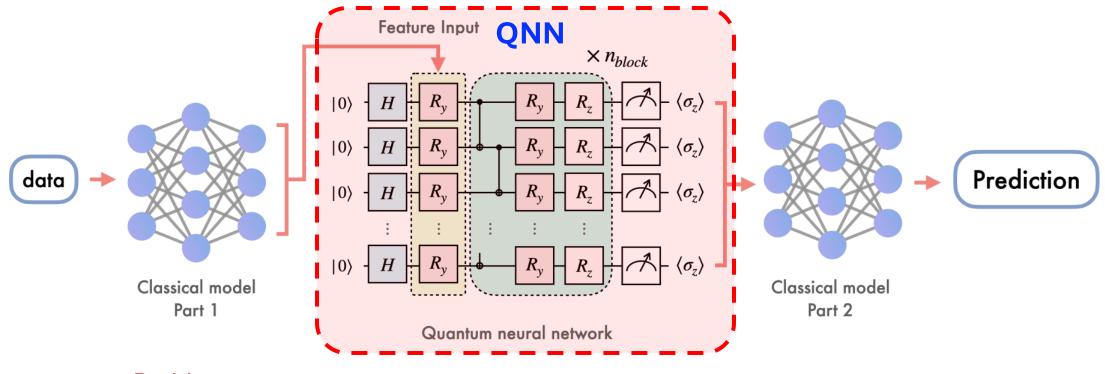
• Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective



• Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective



• Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective

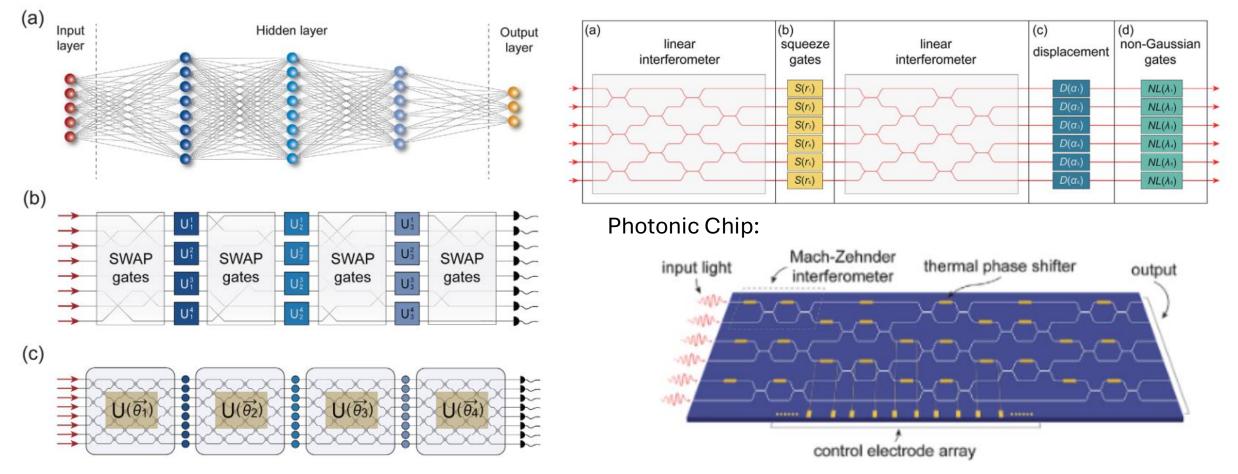


Problems:

(1) Partition Cost; (2) Large Noise in Communication Channel

# Hybrid Quantum Machine Learning with Photonic QC

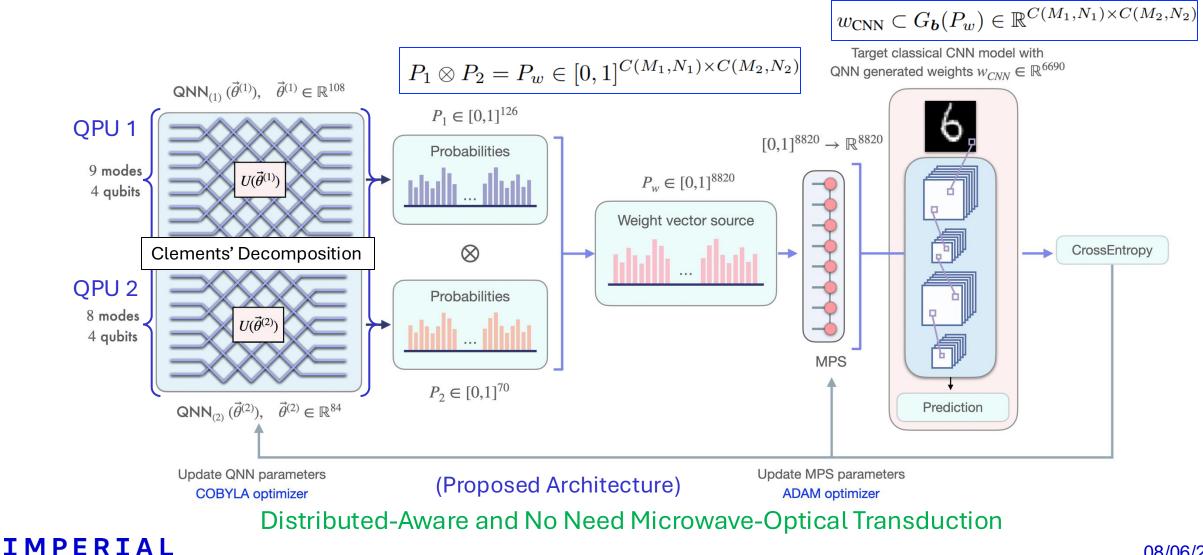
Photonic QNNs integrate quantum mechanics and optical systems to enable scalable, noiseresilient machine learning for quantum and classical data



Yu, Shang, et al. "Shedding light on the future: Exploring quantum neural networks through optics." *Advanced Quantum Technologies* (2024): 2400074.

# **Preliminary: Photonic Quantum Neural Networks**

• Distributed Photonic QNNs



08/06/2025

UANDELA

# **Preliminary: Photonic Quantum Neural Networks**

**Gradient Estimation of Photonic Quantum Circuit Compressed Parameters.** The target NN parameters  $w_{\text{CNN}}$  are generated through the use of QNNs coupled with a mapping model. The quantum-dependent parameters, denoted as  $(\vec{\theta}^{(i)}, \boldsymbol{b})$ , influence the target NN parameters through the quantum state preparation and measurement steps. The gradient of the loss function, which captures the effect of the quantum parameters, is expressed as:

$$\nabla_{\vec{\theta}^{(i)}, \boldsymbol{b}} \mathcal{L} = \left(\frac{\partial w_{\text{CNN}}}{\partial (\vec{\theta}^{(i)}, \boldsymbol{b})}\right)^T \cdot \nabla_{w_{\text{CNN}}} \mathcal{L}.$$
(4)

Here,  $\frac{\partial w_{\text{CNN}}}{\partial(\vec{\theta}^{(i)}, \mathbf{b})}$  represents the Jacobian matrix, which quantifies the sensitivity of the classical parameters  $w_{\text{CNN}}$  to variations in the quantum parameters  $(\vec{\theta}^{(i)}, \mathbf{b})$ .

**Parameter Update of Photonic Quantum Circuit Compressed Parameters.** The learning rate  $\eta$  is a critical factor, particularly given the complex dynamics introduced by the quantum-classical interface. The update rule for the quantum parameters is defined as:

$$\vec{\theta}_{t+1}^{(i)}, \boldsymbol{b}_{t+1} = \vec{\theta}_t^{(i)}, \boldsymbol{b}_t + \eta \nabla_{\vec{\theta}^{(i)}, \boldsymbol{b}} \mathcal{L}.$$
(5)

This update ensures that the quantum parameters are optimized to improve the performance of the target NN. The equation provides a high-level representation of the gradient update in an exact quantum state simulation. However, in practical applications using real quantum hardware or specific backend providers, the gradient calculation must incorporate the parameter shift rule and its variants (Mitarai et al., 2018; Schuld et al., 2019).

Algorithm 1 Photonic Quantum-Train Forward Pass **Require:** Input tensor  $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$  (height  $\times$  width  $\times$ channels), PQC parameters  $\theta \in \mathbb{R}^d$ , Photonic modes  $\{M_k\}_{k=1}^K$ , Measurement budget  $N_{\text{samp}}$ , CNN template  $S = \{(n_i, \mathbf{s}_i)\}$  (param counts × shapes) **Ensure:** Class logits  $\mathbf{y} \in \mathbb{R}^{K}$ **PHOTONIC PARAMETER GENERATION** 1:  $\{\theta^{(k)}\}_{k=1}^K \leftarrow \operatorname{split}(\theta)$ Clements-decomposed MZI meshes 2: for  $k \in \{1, ..., K\}$  do ▷ Parallel QNN execution 3:  $\mathbf{p}^{(k)} \leftarrow \operatorname{norm}(\operatorname{QNN}_{k}(\theta^{(k)}, N_{\operatorname{samp}}))$ ⊳  $C(M_k, N_k)$ -dim probabilities per Eq. (1) 4: end for 5:  $\mathbf{P}_w \leftarrow \operatorname{vec}(\bigotimes_{k=1}^K \mathbf{p}^{(k)})_{1:m} \triangleright \operatorname{Truncated}$  to m params via Eq. (1) **OUANTUM-CLASSICAL MAPPING** 6:  $\mathbf{v} \leftarrow \mathrm{MPS}(\mathbf{P}_w; \boldsymbol{\chi})$  $\triangleright G_b$  with  $\chi$  from Table I 7:  $\mathbf{v} \leftarrow \mathbf{v} - \mu_{\mathbf{v}}$  $\triangleright$  Centering PARAMETER ALLOCATION 8:  $\mathcal{W} \leftarrow \{\}; c \leftarrow 0$ 9: for  $(n_i, \mathbf{s}_i) \in \mathcal{S}$  do  $\mathcal{W}[j] \leftarrow \operatorname{reshape}(\mathbf{v}[c:c+n_i], \mathbf{s}_i) \triangleright \operatorname{Param slicing with}$ 10:  $c \leq m$ 11:  $c \leftarrow c + n_i$ 12: end for **CLASSICAL INFERENCE** 13:  $\mathbf{y} \leftarrow \text{Sequential}$  ( 14: Conv2D( $\mathcal{W}[1]$ ), MaxPool,  $Conv2D(\mathcal{W}[2]), AvgPool,$ 15: Flatten, Linear( $\mathcal{W}[3]$ ), 16: 17: ReLU, Linear( $\mathcal{W}[4]$ )(**x**) 18: return y

| Configuration of | Hyperparameter | Meaning                                                                                                                  | Value                                   |
|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| mapping model    | Input size     | Input of the mapping model $( \phi_i\rangle,  \langle \phi_i   \psi(\vec{\theta}^{(i)}) \rangle ^2)$ (Liu et al., 2024c) | $\left\lceil \log_2 m \right\rceil + 1$ |
| IMPERIAL         | Bond dimension | Main structure parameter of the MPS mapping model                                                                        | $1 \sim 10$                             |

# Result

#### Photonic QT with different bond dimensions

Training

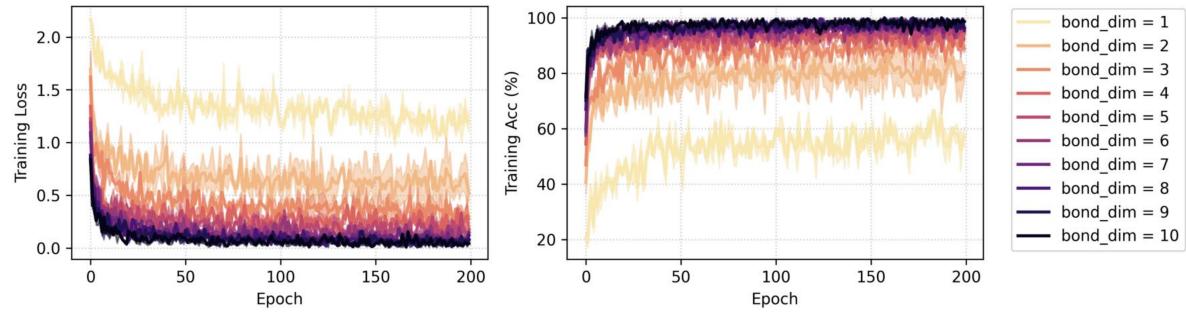
Testing

Generalization

# of training

| Benchmark                   | k: Classical             | Model (Base             | eline)                  |           | dimension         | # of training parameters | accuracy (%)                                                      | accuracy (%)                                                      | error                                                                                   |
|-----------------------------|--------------------------|-------------------------|-------------------------|-----------|-------------------|--------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| # of training<br>parameters | Training<br>accuracy (%) | Testing<br>accuracy (%) | Generalization<br>error |           | 1<br>2<br>3       | 223<br>316<br>471        | $58.256 \pm 2.34$<br>$83.340 \pm 2.77$<br>$88.693 \pm 1.67$       | $55.775 \pm 3.27$<br>$81.375 \pm 2.28$<br>$87.057 \pm 2.66$       | $\begin{array}{c} 0.0219 \pm 0.007 \\ 0.0462 \pm 0.032 \\ 0.0364 \pm 0.016 \end{array}$ |
| 6690                        | $99.983 \pm 0.02$        | $96.890 \pm 0.31$       | $0.1690 \pm 0.005$      | •         | 4                 | 688<br>967               | $93.916 \pm 0.45$<br>$95.450 \pm 0.39$                            | $93.292 \pm 0.62$<br>$93.042 \pm 0.77$                            | $\begin{array}{c} 0.0304 \pm 0.010 \\ 0.0679 \pm 0.002 \\ 0.0950 \pm 0.010 \end{array}$ |
|                             |                          |                         | 10 times                | compressi | ion $\frac{6}{7}$ | 1308<br>1711             | $95.430 \pm 0.39$<br>$96.953 \pm 0.02$<br>$97.773 \pm 0.22$       | $93.042 \pm 0.77$<br>$94.917 \pm 0.60$<br>$94.957 \pm 0.82$       | $0.0930 \pm 0.010$<br>$0.1135 \pm 0.013$<br>$0.1315 \pm 0.031$                          |
|                             |                          |                         |                         |           | 8                 | 2176                     | $97.866 \pm 0.78$                                                 | $94.707\pm0.47$                                                   | $0.1399\pm0.007$                                                                        |
|                             |                          |                         |                         |           | 9<br>10           | 2703<br>3292             | $\begin{array}{c} 98.373 \pm 0.12 \\ 98.990 \pm 0.34 \end{array}$ | $\begin{array}{r} 94.835 \pm 0.48 \\ 95.502 \pm 0.84 \end{array}$ | $\begin{array}{c} 0.1624 \pm 0.021 \\ 0.2552 \pm 0.053 \end{array}$                     |

Rond

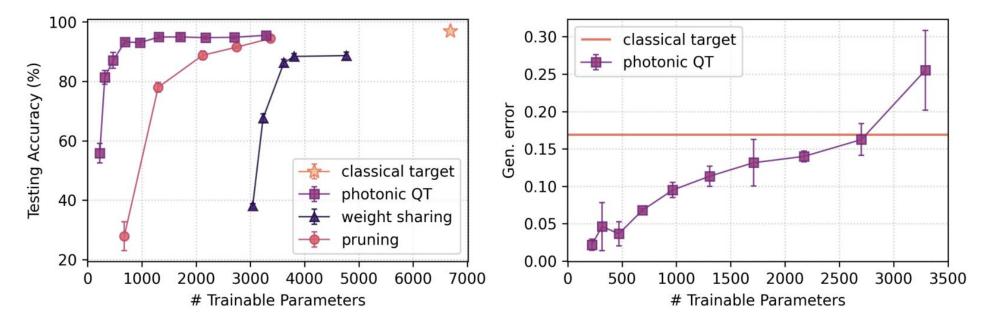


IMPERIAL

Chen et al., arXiv:2505.08474

# **Result**

| Method                               | # of training parameters | Testing accuracy (%) |
|--------------------------------------|--------------------------|----------------------|
| Original                             | 6690                     | $96.890 \pm 0.31$    |
| Weight sharing                       | 4770                     | $88.666 \pm 1.207$   |
| Pruning                              | 3370                     | $94.443 \pm 0.923$   |
| Photonic QT (bond dimension $= 10$ ) | 3292                     | $95.502\pm0.84$      |
| Photonic QT (bond dimension $= 4$ )  | 688                      | $93.292\pm0.62$      |
| Gate-based QT                        | 1365                     | $92.172 \pm 0.35$    |



### IMPERIAL

Chen et al., arXiv:2505.08474

# Result

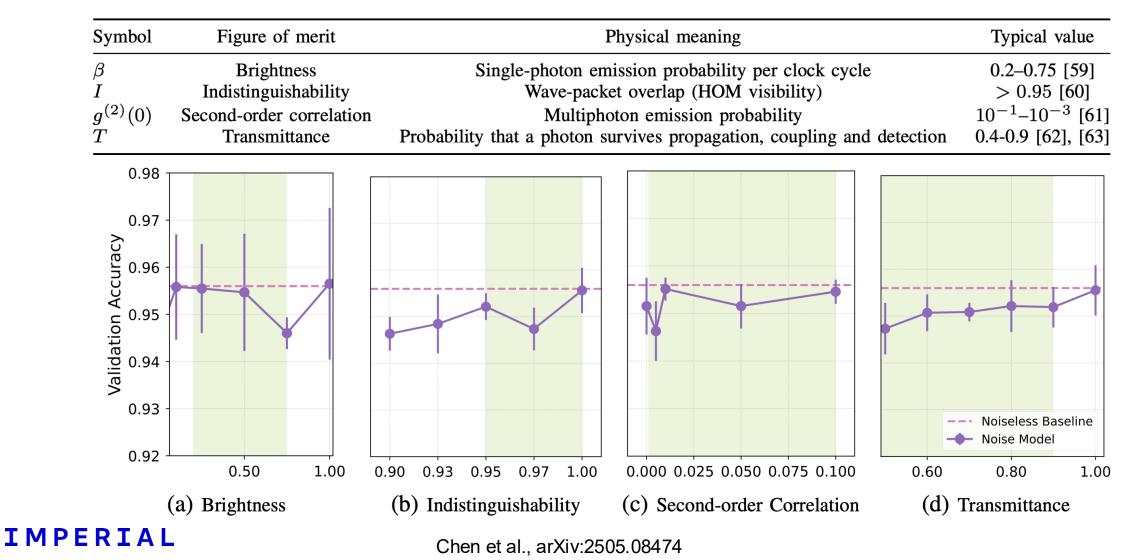


08/06/2025

### **Noise Resilience**

TABLE V

Key hardware parameters for state-of-the-art single-photon sources and integrated photonic circuits.

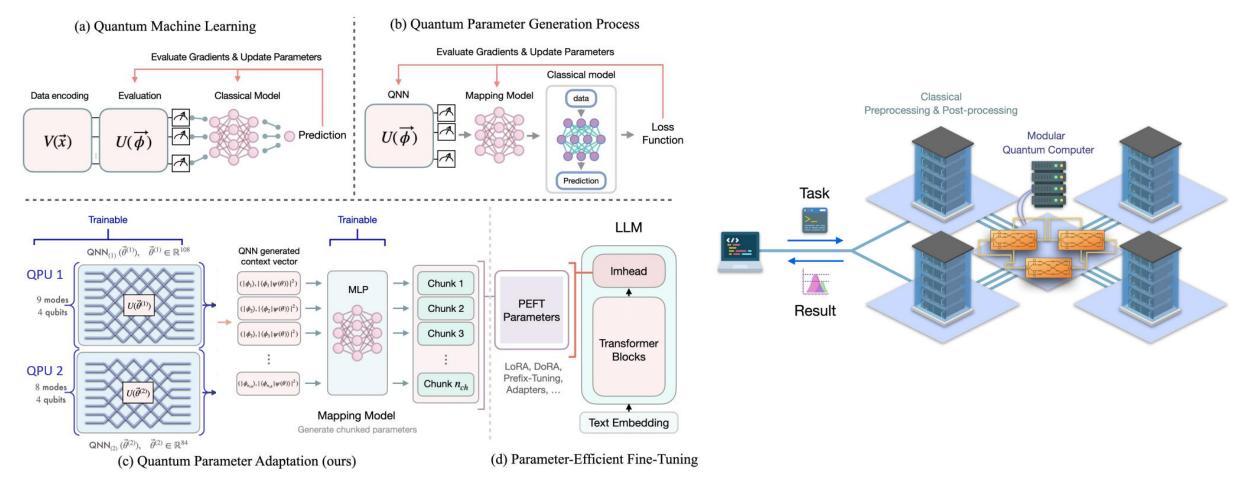


# Conclusion

- Distributed Photonic QNNs: Hybrid training approach using photonic QNNs to generate weights for classical models, enabling efficient compression.
- Classical Inference: Offloads the most compute-intensive training phase to quantum hardware; inference runs classically on CPUs/GPUs for Quantum-HPC applications.
- High Efficiency: Achieves up to 90% parameter reduction with competitive accuracy, outperforming classical compression techniques.
- Noise Resilience: Noise analysis shows our photonic QNN framework maintains robust validation accuracy across practical photonic imperfections, demonstrating strong noise resilience.

### Future Work – Distributed Quantum HPC for Artificial Intelligence

- Working on more complex and larger-parameter models for example, fine-tuning LLMs.
- Using quantum computers for training and classical computers (CPU or GPU) for inference.



Liu et al, ICLR 2025

### **Future Work – Quantum for Humanity**



**FinTech** Credit Scoring, Fraud Detection etc.

Manufacturing Defect Detection, Predictive Maintenance etc.

Medical Diagnosis Disease Diagnosis, Personalized Medicine etc.

**Net Zero** Renewable Energy Forecasting, Pollution Control etc.

Than you for your time! Any Question?

