
ORNL is managed by UT-Battelle LLC for the US Department of Energy

ORNL Quantum Software Stack

Amir Shehata, Peter Groszkowski, Thomas Naughton, Murali Gopalakrishnan
Meena, Elaine Wong, Daniel Claudino, Rafael Ferreira da Silva, Thomas Beck
shehataa@ornl.gov
https://arxiv.org/abs/2503.01787

22 Open slide master to edit

Motivation for HPC/QC Integration
• Quantum Computing (QC) could solve specific problems

exponentially faster than classical computers
– But the technology is still in its infancy
– Costly, hardware limitations, environment limitations, errors, etc.

• In the foreseeable future,
– QC will coexist and collaborate with classical High-Performance

Computing (HPC) environments
– Use QPUs as accelerators like we use GPUs

• Early involvement is crucial for understanding the challenges of
integration

33 Open slide master to edit

Integration Goals
• Support Hybrid Application workflows

l Integrate with quantum hardware and
quantum simulators

l Resource management integration

• Quantum Software Stack

l Programming environment flexibility

l Hardware/simulator flexibility

l Standardize quantum platform access

l Enable tool integration (e.g. circuit cutting,
gate reduction)

l Optimize HPC and QC resource usage

44 Open slide master to edit

Integration Space

55 Open slide master to edit

Challenges
• HPC/QC diverse usage

• Diverse front and backend usage
• Resource management

l Allocation of HPC and QC resources

l Job Scheduling

l Placement of tasks on resources

l Coordinated HPC/QC task scheduling

• Efficient use of HPC resources for classical
quantum simulators

66 Open slide master to edit

Quantum Software Stack
• To effectively address challenges, need to

develop the correct levels of software
abstractions in the software stack

• Levels of abstractions:

l Resource management & task
placement

l Frontend

l Quantum Programming Interface (QPI)

l Tool Interface

l Quantum Platform Manager (QPM)

77 Open slide master to edit

Overview

• From right to left, the quantum machine is connected to a quantum controller
− The quantum controller generates, manipulates, and reads out signals that control the

quantum computation.
• A “quantum gateway” is directly connected to the quantum controller

− The quantum gateway runs resource management processes and other low latency software
• The HPC system runs the hybrid application and the bulk of the QC/HPC software stack

88 Open slide master to edit

GPU Lessons
• Like GPUs Quantum machines will act as

accelerators
• Lessons learned from GPU/CPU integration:

• The QC stack will expose a set of application
facing APIs like HIP APIs

• The QC compilation process will be similar to
the GPU one, including the Just-In-Time
compilation step from an intermediate
representation to the target architecture

• Quantum circuits will need to be scheduled
and executed on the target platform raising
similar challenges to host/GPU allocation and
coordination

99 Open slide master to edit

Quantum Circuit Execution Patterns
• Hybrid applications are evolving

• Focus on general circuit execution patterns

a) Single Circuit Execution b) Ensemble Circuit Execution c) Dynamic Circuit Execution

• In pattern (c) classical logic error corrects circuit results in realtime via mid
circuit measurements

1010 Open slide master to edit

Hybrid Applications Usage Patterns
• Classify application patterns based on computational demands

• Quantum computing deployment will be limited, making classification
essential for optimal resource management.

a) High classical/Low Quantum b) Low classical/High quantum c) Roughly equal

• A scheduler which understands these patterns helps minimize resource
idle time

1111 Open slide master to edit

Quantum Time Scales
• The Length of time a quantum program (circuit) executes for

• Can a classical program wait for quantum program completions?

• Possible scenarios

• Low latency Dependency: Error correction

• Manageable latency Dependency: Classical can wait

• No Dependency: Pre-processing/Post-processing

1212 Open slide master to edit

Resource Management
• Resource management strategy should balance two views

– Platform View
– Maximize the utilization of the resource

– Application View
– Minimize time to solution

• HPC strategy prefers application view, where compute
resources are dedicated for the run-time of the hybrid job
– If QC requirements are low, QC remains idle and the same for HPC

• Need to consider two allocation strategies to examine the problem;
simultaneous and interleaved allocation

1313 Open slide master to edit

Resource Allocation

Interleaved Allocation

Simultaneous Allocation• Allocation of computational assets is
driven by application usage patterns
− Simultaneous Allocation

• QC and HPC resources are
allocated concurrently

− Interleaved Allocation
• QC and HPC resources can be

allocated independently and in an
interleaved manner

• Proposed software stack needs to work
with both allocation strategies

1414 Open slide master to edit

Two-Level Scheduling

• Goal: Allow multiple jobs to use a single QC
resource at the same time

• First-level Scheduling
• SLURM or similar can be used to get an initial

allocation
− Allocation granted only if QC resource can

handle job load
• SLURM’s Heterogeneous Job feature can be used to

specify both HPC and QC resources
− Supports simultaneous allocation

• Second-level Scheduling
• Circuits from different jobs are scheduled to ensure

timely execution
• Research task scheduling strategies such as a credit-

based system to manage circuits from multiple jobs

1515 Open slide master to edit

Hybrid HPC/QC Application Preparation

• Hybrid Applications consist of classical and
quantum code
− Classical code follows standard handling

procedures
− Quantum code undergoes several compiler

passes before reaching the hardware
• Interpreted applications

− All the QC compiler passes and transpilation
occurs at run-time

• Compiled application
− Some QC compiler passes can be done at

compile time while others at run-time
• Highlights the need for a unified interface

to the QC compilation passes

1616 Open slide master to edit

Hybrid HPC/QC Application Compilation Process

• Both compiled and interpreted
applications follow the same logical steps
• Separation of host and quantum code

− Host can be CPU and GPU
− These are handled in the traditional manner

• Quantum code passes through a set of
tools/compiler passes

• Quantum code is lowered to an intermediate
representation (IR)

• Host and quantum code is linked against
required libraries and packaged in the same
binary

• When binary is executed the quantum code
can be JIT compiled down to hardware format

1717 Open slide master to edit

So far …
• Identified integration goals and challenges
• High-level overview of the proposed software stack
• Overview of circuit execution and hybrid application patterns
• The need for efficient HPC/QC resource management and possible

strategies

• Hybrid HPC/QC application preparation and compilation passes

• Questions?

1818 Open slide master to edit

Architecture: Software Layers
• Breakdown software stack into layers

• Hybrid HPC/QC Application Layer
• Applications use existing circuit building frameworks such

as Qiskit to formulate their quantum tasks
• Quantum Software Stack Backend

• Circuit building framework backend which interfaces
with the software stack

• Quantum Programming Interface
• Provides APIs for version and execution control, error

handling, etc
• Quantum Platform Manager API

• Hardware agnostic API implemented by the hardware
provider

• Quantum Task Scheduler
• Responsible for efficient use of the QC resource

• Quantum Controller
• Generates pulses towards the quantum hardware

1919 Open slide master to edit

Architecture: Normalization
• Standardized interfaces in software system architecture is

important to ensure, among other benefits,
interoperability, scalability and reduced vendor lock-in

• Three interfaces in need of normalization:
• Quantum Programming Interface (QPI)

− Application facing interface
− Congruent to HIP
− Provides APIs such as version checks, execution control,

error and event handling and hardware queries
• Quantum Platform Manager (QPM)

− Platform facing interface
− Abstracts hardware features for seamless, platform-

independent access.
• Quantum Toolchain API

− Enables new circuit transformation tool integration into
the software stack

2020 Open slide master to edit

Architecture: Quantum Platform Manager API

A. Handle all aspects of the quantum
platform

B. Provides soft standardization to
access quantum platform

C. Packaged as a library which
provides a set of common features

D. Hardware providers are
responsible for implementing their
specific plugins

E. Provides a hardware-friendly API

2121 Open slide master to edit

Architecture: Quantum Programming Interface (QPI)

Mesh: Container of devices
Device: Represents a quantum
resource
q-stream: A set of operations to
perform
Tool pipeline: A set of tools to apply
on quantum tasks
Completion Queue: Receives
completion notifications
Event Queue: Receives event
notifications

2222 Open slide master to edit

Architecture: Detailed
• User writes an sbatch script outlining the resources

needed for their hybrid application
• The resource manager reserves both Quantum and

Classical HPC resources
• The SLURMd (or similar) runs on the quantum gateway

and manages hardware specific reservation policies

2323 Open slide master to edit

Architecture: Detailed

• The hybrid application starts running on the HPC
allocation

• It uses the Quantum Programming Interface (QPI) to
initiate operations which require quantum resources

2424 Open slide master to edit

Architecture: Detailed

• Quantum circuits are fed through a tool pipeline
which performs user specified operations on the
circuit

• The last step is to transpile the circuit to a
hardware specific format which is then passed to
the HW for execution via the Quantum Platform
Manager (QPM)

• The QPM is used to abstract the hardware
platform

2525 Open slide master to edit

Architecture: Detailed

• Hardware specific quantum circuits are queued
on the quantum gateway

• Quantum gateway has the hardware specific
QPM API implementation

• QPM provides a scheduling library which can be
used by the QPM to schedule tasks from different
jobs

• QIR Execution Engine can be an option for driving
the quantum controller

2626 Open slide master to edit

Simulation Environment

• Leverage HPC compute resources to
power the Quantum Simulation
– Allocated distinct set of resources

• Different types of simulators
– Trade-offs in representing quantum

states on classical resources, e.g.,
• State Vector
• Tensor Network

• Quantum Platform Manager (QPM)
– Can partition QC resources for usage

scenarios & types of simulators

Dynamic Simulation Environment

2727 Open slide master to edit

Workflow Management System Integration

• The proposed software stack handles both
interleaved and simultaneous allocation
modes

• WMS can leverage this capability to
schedule classical jobs, quantum jobs or
hybrid HPC/QC Jobs

• This design also allows for the eventual
integration with OLCF’s Secure Scientific
Mesh (S3M)

− S3M will enable controlled access to
QC/HPC resources through policy-driven
interfaces

2828 Open slide master to edit

The QFw Deep Dive - SLURM Batch Script

2929 Open slide master to edit

Heterogeneous Feature

3030 Open slide master to edit

General Resource (GRES) Feature

3131 Open slide master to edit

SLURM Job Header

3232 Open slide master to edit

Run the Application

3333 Open slide master to edit

Simulation case

3434 Open slide master to edit

Run the Application in the Simulation Environment

3535 Open slide master to edit

Setting up the QFw

NOTE: Script run in allocation

3636 Open slide master to edit

Running the Application

3737 Open slide master to edit

Tearing down the QFw

3838 Open slide master to edit

Manual Resource Allocation for Simulation

3939 Open slide master to edit

Heterogeneous Allocation

4040 Open slide master to edit

Run 1 Iterations of a 20 Qubit Circuit

4141 Open slide master to edit

The QFw Startup: Process Diagram

4242 Open slide master to edit

Directly interfacing with the QFw

• Get the instance of the Resource manager

• Get a reference to the QPM API

4343 Open slide master to edit

Directly interfacing with the QFw

• Get the instance of the Resource manager

• Get a reference to the QPM API

• Run the circuit

4444 Open slide master to edit

Generating the Circuit

• Generate circuit

• Convert to QASM 2.0 and create info structure

4545 Open slide master to edit

Create the Circuit with the QFw

• Circuit ID (cid) is returned by the QFw

4646 Open slide master to edit

Run the Circuit with the QFw

• Synchronous run returns the circuit result

• Asynchronous run returns immediately

4747 Open slide master to edit

Result output

4848 Open slide master to edit

Run 4 Iterations of a 20 Qubit Circuit

4949 Open slide master to edit

Result Obtained in about the Same Time

5050 Open slide master to edit

Using the QFw Backend with a QAOA

• Import the QFw Simulator backend

5151 Open slide master to edit

Importing and Instantiating the QFw Backend

• Import the QFw simulator backend

• Create a QFw simulator backend instance

5252 Open slide master to edit

Use the QFw backend Instance
• Create a backend sampler to be used with QAOA

5353 Open slide master to edit

Define the QAOA

5454 Open slide master to edit

Solve the QAOA using the backend

5555 Open slide master to edit

Takeaways

• Versatile Stack – Supports NISQ and future
quantum systems, integrated with HPC.

• Formalized Interfaces – Enables integration
of diverse implementations of software layers
and tools

• Optimized Architecture – Manages
scheduling, jobs, and data movement.

• Seamless Integration – Works with scientific
apps and workflows.

• Flexible Deployment – Supports on-prem and
potentially cloud quantum hardware.

5656 Open slide master to edit

Future Plans

• Work with the community to detail the Quantum Programming
Interface (QPI)
– Example: What API categories make sense for quantum applications.

• Explore quantum hardware features
– Engage with vendors: IBM-Q, IonQ, IQM, Quantinuum, etc.
– Identify the QPM APIs

• Work with the community to detail the tool chain interface
– Identify the optimal interface to allow the integration of new circuit transformation tools

• Achieve efficient quantum-classical resource utilization
– Research strategies for two-level scheduling
– Research strategies for virtualizing a Quantum Computer
– Heuristics for circuit/resource mappings to improve utilization

5757 Open slide master to edit

ORNL Quantum Systems & Software Workshop (OQSSw)

• QCUF: July 21-24, 2025

• OQSSw: July 25, 2025
• Registration link: https://www.olcf.ornl.gov/calendar/oqssw/

https://www.olcf.ornl.gov/calendar/oqssw/

5858 Open slide master to edit

Questions?

• Supported by
– This research used resources of the Oak Ridge Leadership Computing

Facility at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

5959 Open slide master to edit

Questions for IQM

• Error Correction Requirements – Will quantum error correction require high-bandwidth
classical compute resources like GPUs and CPUs, or would a low-power processor (e.g.,
FPGA) suffice?

• HPC Simulators – Do you anticipate a continued need for quantum simulators running on
HPC, or will their utility diminish due to increasing memory demands as qubit counts grow?

• Hardware Access APIs – Do you provide an API for direct hardware access? We could
leverage this to define the Quantum Processing Management (QPM) APIs.

• Circuit Runtime Estimation – Have you considered the best approach for calculating how
long a circuit will take to execute on your system?

• Circuit Size Variability – Based on your experience, do most applications generate circuits of
consistent size, or are there cases where circuit size varies significantly?

• Performance Benchmarking – What metrics are most relevant for evaluating hybrid HPC-QC
performance?

