I %OAK RIDGE
National Laboratory

ORNL Quantum Software Stack

b

Amir Shehata, Peter Groszkowski, Tho
Meena, Elaine Wong, Daniel Claudino,

shehataa@ornl.gov

https://arxiv.org/abs/2503.01787

ORNL is managed by UT-Battelle LLC for the US Department of Energy

ST\ U.S. DEPARTMENT OF

(©)ENERGY

%OAK RIDGE

National Laboratory

Motivation for HPC/QC Integration

« Quantum Computing (QC) could solve specific problems
exponentially faster than classical computers

- But the technology is still in its infancy
— Costly, hardware limitations, environment limitations, errors, etc.

e In the foreseeable future,

- QC will coexist and collaborate with classical High-Performance
Computing (HPC) environments

— Use QPUs as accelerators like we use GPUs

« Early involvement is crucial for understanding the challenges of
integration
%OAKRIDGE

National Laboratory

Integration Goals
« Support Hybrid Application workflows

s ——

. Integrate with quantum hardware and

quantum simulators Hybrid Application

- Resource mdnagement in’regro’rion [ORNL Quantum Software Stack]
« Quantum Software Stack p— —
Hardware S|n_1ulat|on
Environment

« Programming environment flexibility
. Hardware/simulator flexibility

. Standardize quantum platform access

. Enable tool integration (e.g. circuit cutting, ~
gate reduction) S AtoS

» Optimize HPC and QC resource usage
%OAKRIDGE

National Laboratory

Integration Space

[-IPCIQC Integratior]

v v

Loose Integration Tight Integration
Model Model

v v l

q HPC Node
[On-Premises] Off-Premises]
\ QC
v v >
Y

r
QC QC)
[Simulator Hardware Cloud Providers

&OAK RIDGE

National Laboratory

Challenges

QK Rince
Dy | T I(L})ltl Heit

« HPC/QC diverse usage Manasront
» Diverse front and backend usage slurm
e Resource management Hybr.dApp..cat.o
. Allocation of HPC and QC resources - Cira
o Job sChedU"ng [Quantum Software Stack]
Quantu
. Placement of tasks on resources Simulation
Environment

. Coordinated HPC/QC task scheduling

» Efficient use of HPC resources for classical - .
quantum simulators IBMQ o | QM
Q At®S

uuuuuuuuuu

%OAK RIDGE

National Laboratory

Quantum Software Stack

Resource Management Abstraction
« To effectively address challenges, need to (HybridApplication)
develop the correct levels of software @ S i
abstractions in the software stack L =
« Levels of abstractions: 4 Quantum Software Stack)
[Frontend Abstraction]
« Resource management & task [Quantum Programming Interface (@PI) |
p|O Ce me HT [Tool Abstraction]
Fron_l_end [Quantum Platform Manager (QPM) API]
H uantum Q_uantu_m
« Quantum Programming Interface (QPI) Simuiation

. Tool Interface

« Quantum Platform Manager (QPM) sl
1BMQ crione | QM

%OAK RIDGE Q At@S

A e QUANTINUU v
National Laboratory

Overview

| Resource Management System (e.g., SLURM)

HPC/QC Hybrid Application
MPI Library
Quantum
Compiler
Toolchain | Quantum Programming Interface (QPI)
| Quantum Platform Manager (QPM) I Quantum Task > Quantum Pulse

Hardware >
interface

Generator

rkrt,yjiiﬁrﬂ:ﬂ <:::> <}: @ \,::>
B— v s
uantum Gateway ontroller

« Fromright to left, the quantum machine is connected to a quantum controller
— The quantum conftroller generates, manipulates, and reads out signals that control the
quantum computation.
A '"quantum gateway” is directly connected to the quantum controller
- The quantum gateway runs resource management processes and other low latency software
« The HPC system runs the hybrid application and the bulk of the QC/HPC software stack

%OAK RIDGE

National Laboratory

GPU Lessons

« Like GPUs Quantum machines will act as
accelerators

« Lessons learned from GPU/CPU integration:
« The QC stack will expose a set of application
facing APIs like HIP APIs

« The QC compilation process will be similar to

the GPU one, including the Just-In-Time
compilation step from an intermediate

representation to the target architecture

« Quantum circuits will need to be scheduled
and executed on the target platform raising
similar challenges to host/GPU allocation and
coordination

%OAK RIDGE

National Laboratory

Quantum Software Stack

GPU Software Stack

HPC/QC Hybrid Application

Q e Stack Backend

GPU Application

|
Generic Qulantum Task GPU Klernels
Y Y
'Quantum Programming Interface| Heterogeneous Interface for
(QPI)

Portability (HIP)
I

Hardware Specific
Quantum Task

GPU Runtime Calls

A

Quantum Platform Manager
(QPM)

ROCm CUDA
lib lib

Quantum Instructions

Hardware Specific Calls

v

Quantum Controller

Hardware Instructions

Hardware Interface

Quantum Hardware

ROCr CUDA
Kernel Kernel
Module Module

T T
Access hardware via
PCle or MMIO registers

| |

MMIO/PCle

GPU

Quantum Circuit Execution Patterns

 Hybrid applications are evolving

e Focus on general circuit execution patterns

a) Single Circuit Execution b) Ensemble Circuit Execution c) Dynamic Circuit Execution
_— Circuit—>»,
Circuit———p]
Circuit——>1 Circuit——>| <:£l>
Circuit——>] =
Hybrid HPCIQC Quantum Hybrid HPCIQC Quantum Hybrid HPC/QC % Quantum
Application Platform Application Platform Application & Platform
(3}
[€—Result:
[<€—Result [€<——Result
Result [€—Result <:$

« In pattern (c) classical logic error corrects circuit results in realtime via mid
circuit measurements

%OAK RIDGE

National Laboratory

Hybrid Applications Usage Patterns

Classify application patterns based on computational demands

Quantum computing deployment will be limited, making classification
essential for optimal resource management.

a) High classical/Low Quantum b) Low classical/High quantum c) Roughly equal

O ¢ O0OC

« A scheduler which understands these patterns helps minimize resource
idle time

%OAK RIDGE

National Laboratory

Quantum Time Scales

* The Length of time a quantum program (circuit) executes for

« Can a classical program wait for guantum program completions?
» Possible scenarios

* Low latency Dependency: Error correction

« Manageable latency Dependency: Classical can wait

* No Dependency: Pre-processing/Post-processing

%OAK RIDGE

National Laboratory

Resource Management

e Resource management strategy should balance two views
— Platform View
- Maximize the utilization of the resource
— Application View
— Minimize time to solution

* HPC strategy prefers application view, where compute
resources are dedicated for the run-time of the hybrid job

- If QC requirements are low, QC remains idle and the same for HPC

 Need to consider two allocation strategies to examine the problem;
simultaneous and interleaved allocation

%OAK RIDGE

National Laboratory

Resource Allocation

« Allocation of computational assefts is
driven by application usage patterns .
N SlmU"dneOUS A"OCClhon Time Quantum Step Classical Step

e QC and HPC resources are
allocated concurrently
— Interleaved Allocation

* QC and HPC resources can be
allocated independently andinan Time >

interleaved manner
Quantum Step Classical Step

« Proposed software stack needs to work
with both allocation strategies

%OAK RIDGE

National Laboratory

Two-Level Scheduling

« Goal: Allow multiple jobs to use a single QC Hybrid HPC/QC Application (s)
resource at the same time
e First-level Scheduling Quantum Step Classical Step
) S|I|URMT.OI’ similar can be used to geT an initial Quantum Reservation Classical Reservation
alioccarion System System
— Allocation granted only if QC resource can App 1 App N
hCIndle jOb |00d Credit bound Credit bound HPC Queue
Q Q
+ SLURM'’s Heterogeneous Job feature can be used to B B -
specify both HPC and QC resources ~ ~ —
— Supports simultaneous allocation = = a

+ Second-level Scheduling
« Circuits from different jobs are scheduled to ensure Task Scheduling Job Scheduling

timely execution

+ Research task scheduling strategies such as a credit-

based system to manage circuits from multiple jobs Quantum Resources HPC Nodes

%OAK RIDGE

National Laboratory

Hybrid HPC/QC Application Preparation

Compiler passes

« Hybrid Applications consist of classical and
Y oJe; —

qUGnTum COde Quantum Circuit
— Classical code follows standard handling Program Transformations
proce dures Transformation 1
- Quantum code undergoes several compiler Quantum Code 7
passes before reaching the hardware Classical Code ranepiation

« Interpreted applications

v

— All the QC compiler passes and transpilafion Y r———

occurs af run-time e
« Compiled application v
— Some QC compiler passes can be done at Pulse Generator
compile time while others at run-time 7
« Highlights the need for a unified interface Quantum

Hardware

to the QC compilation passes

%OAK RIDGE
Nati

ional Laboratory

Hybrid HPC/QC Application Compilation Process

« Both compiled and interpreted

applications follow the same logical steps
« Separation of host and quantum code
— Host can be CPU and GPU
— These are handled in the fraditional manner

* Quantum code passes through a set of
tools/compiler passes

 Quantum code is lowered to an intermediate
representation (IR)

« Host and quantum code is linked against
required libraries and packaged in the same
binary

 When binary is executed the quantum code
can be JIT compiled down to hardware format

Compiled to IR
(ex: QIR)

%OAK RIDGE
Nati

ional Laboratory

So far ...

 Identified infegration goals and challenges
e High-level overview of the proposed software stack
» Overview of circuit execution and hybrid application patterns

* The need for efficient HPC/QC resource management and possible
strategies

« Hybrid HPC/QC application preparation and compilation passes

e Questionse

%OAK RIDGE

National Laboratory

Architecture: Software Layers

Breakdown software stack into layers

Hybrid HPC/QC Application Layer
« Applications use existing circuit building frameworks such
as Qiskit to formulate their gquantum tasks
Quantum Software Stack Backend
« Circuit building framework backend which interfaces
with the software stack
Quantum Programming Interface
» Provides APIs for version and execution control, error
handling, etc
Quantum Platform Manager API
« Hardware agnostic APl implemented by the hardware
provider
Quantum Task Scheduler
* Responsible for efficient use of the QC resource
Quantum Controller
« Generates pulses towards the quantum hardware

%OAK RIDGE

National Laboratory

Quantum Software Stack
Layers

HPC/QC Hybrid Application

Quantum Software Stack Backend

[
Generic Quantum Task
|

Y

Quantum Programming Interface
(QPI)

HardwareI Specific
Quantulm Task

Y

Quantum Platform Manager
(QPM)

Quantum Task Scheduler

v

Quantum Controller

Hardware Instructions

Hardware Interface

Quantum Hardware

Architecture: Normalization

« Standardized interfaces in software system architecture is
important to ensure, among other benefits,
interoperability, scalability and reduced vendor lock-in

« Three interfaces in need of normalization:

« Quantum Programming Interface (QPI)
— Application facing interface
- Congruent to HIP

— Provides APIs such as version checks, execution control,

error and event handling and hardware queries
« Quantum Platform Manager (QPM)
- Platform facing interface
— Abstracts hardware features for seamless, platform-
independent access.
« Quantum Toolchain API
— Enables new circuit transformation tool integration into
the software stack

%OAK RIDGE

National Laboratory

Application

Quantum Programming Interface
(QPI)

Tools

Libraries

Quantum Toolchain
API

Quantum Platform Manager (QPM)
API

Quantum Platform

Architecture: Quantum Platform Manager AP|

A. Handle all aspects of the quantum (* Quantum Piatform Manager Library)

platform Lo e
API

(Reservation, Calibration, Runtime ...)

B. Provides soft standardization to

access quantum platform % Common Utilities 5

C. Packaged as a library which o (o e
provides a set of common features Platform] [Platform] _ Platform
\Provider 1 Provider 2 Provider N

D. Hardware providers are
responsible for implementing their

specific plugins
E. Provides a hardware-friendly API

%OAK RIDGE

National Laboratory

Architecture: Quantum Programming Interface (QPI)

¥ OAK RIDGE
National Laboratory

N: 1>

Mesh: Container of devices
Device: Represents a quantum
resource

g-stream: A set of operations to
perform

Tool pipeline: A set of tools to apply
on quantum tasks

Completion Queue: Receives
completion notifications

Event Queue: Receives event
notifications

| sSBATCH Script |

Architecture: Detailed e

« User writes an sbatch script outlining the resources
needed for their hybrid application

« The resource manager reserves both Quantum and
Classical HPC resources

« The SLURMAd (or similar) runs on the quantum gateway
and manages hardware specific reservation policies |

Classical Logic I I Q F - |

IR/HW specific representation

Quantum Platform Manager (QPM) API

Reservation &

Reservation &

QPM

QPM Implementation
QIR Execution Engine
(QIREE)

Simulator Specific
Interface
Quantum Hardware

%OAK RIDGE

National Laboratory

| sSBATCH Script |

Architecture: Detailed e

Classical Logic I I Q F - |

« The hybrid application starts running on the HPC |
allocatfion

« |t uses the Quantum Programming Interface (QPI) to
initiate operations which require quantum resources

IR/HW specific representation
|

Quantum Platform Manager (QPM) API

Reservation &

Reservation &

QPM

QPM Implementation
QIR Execution Engine

(QIREE)

Simulator Specific
Interface

Quantum Hardware

&OAK RIDGE

National Laboratory

sSBATCH Script |

Resource Management System

Quantum Resources I HPC Resources I

Architecture: Detailed

Hybrid HPC/QC Application
| Classical Logic I I Q F i |
Interface (QPI)
Q Stack

Quantum Programming Interface (QPI)
Library

<R EX: Circuit Cutting

* Quantum circuits are fed through a tool pipeline
which performs user specified operations on the
circuit

+ The last step is to transpile the circuit to a
hardware specific format which is then passed to
the HW for execution via the Quantum Platform
Manager (QPM)

+ The QPM is used to abstract the hardware
P latform QIR Execution Engine

(QIREE)

IR- EX: Gate Reduction

=
]
=
¥
2
=
£
2
€
&
S
(<]

Transpiler

II

IR/HW specific representation

Quantum Platform Manager (QPM) API

Simulation Environment
Reservation &

Reservation &
Scheduling

QPM

QPM Implementation

Simulator Specific
Interface

Quantum Hardware

&OAK RIDGE

National Laboratory

Architecture: Detailed

« Hardware specific quantum circvits are queuved
on the quantum gateway

« Quantum gateway has the hardware specific
QPM APl implementation

« QPM provides a scheduling library which can be
used by the QPM to schedule tasks from different
jobs

* QIR Execution Engine can be an option for driving
the quantum controller

%OAK RIDGE

National Laboratory

Quantum T

1R; Transpiler

IR/HW specific representati(lm

2

Quantum Platform Manager (QPM) API

Reservation & Scheduling

QPM Implementation

QIR Execution Engine
(QIREE)

Quantum Hardware

Simulation Environment

Reservation &
Scheduling

QPM Implementation

Simulator Specific
Interface

RMS
Service
(e.g,slurmd)

Simulation Environment

Dynamic Simulation Environment

» Leverage HPC compute resources to _

power the Quantum Simulation Lu]
— Allocated disfinct set of resources . . f
« Different types of simulators _ .
— Trade-offs in representing quantum [-[_[]
states on classical resources, e.9.,
« State Vector e S 1

» Tensor Network

Nodes Partitioned among
different Simulation categories

« Tensor Network
« State Vector

* Quantum Platform Manager (QPM)

— Can partition QC resources for usage
scenarios & types of simulators

%OAK RIDGE
Nati

ional Laboratory

Workflow Management System Integration

» The proposed software stack handles both
interleaved and simultaneous allocation
modes

« WMS can leverage this capability to
schedule classical jobs, guantum jobs or
hybrid HPC/QC Jolbs

 This design also allows for the eventual
integration with OLCF's Secure Scientific
Mesh (S3M)

- S3M will enable controlled access to

QC/HPC resources through policy-driven
interfaces

%OAK RIDGE
Nati

ional Laboratory

user

Workflow Definition

Workflow Management System

Resource Management System

Resource Management System

Quantum Resources _"

HPC Resources

;

Quantum Application

Classical Application

The QFw Deep Dive - SLURM Batch Script

P! /bin/bash

job component 1
-A
-N 1
--partition=compute
-- 1
- - -per-node=1
--threads-per-core 1
-t 1:00:00

Heterogeneous job definition for the QC node
--partition=quantum # Partition for QC resources
--nodes=1 # Request 1 QC node
=1 # Typically, a QC node would handle one task at a time
=gc:superconducting:1 # Request 1 superconducting QC node
--time=01:00:00 # Job time limit for QC tasks (1 hour)

%OAK RIDGE

National Laboratory

Heterogeneous Feature

P! /bin/bash

job component 1
-A
-N 1
--partition=compute
-- 1
- - -per-node=1
--threads-per-core 1
-t 1:00:00

Heterogeneous job definition for the QC node
--partition=quantum # Partition for QC resources
--nodes=1 # Request 1 QC node

=gc:superconducting:1 # Request 1 superconducting QC node

#
#
it
=1 # Typically, a QC node would handle one task at a time
i
--time=01:00:00 # Job time limit for QC tasks (1 hour)

%OAK RIDGE

National Laboratory

General Resource (GRES) Feature

P! /bin/bash

job component 1
-A
-N 1
--partition=compute
-- 1
- - -per-node=1
--threads-per-core 1
-t 1:00:00

Heterogeneous job definition for the QC node
--partition=quantum # Partition for QC resources
--nodes=1 # Request 1 QC node
=1 # Typically, a QC node would handle one task at a time
:superconducting: # Request 1 superconducting
--time=01:00:00 # Job time limit for QC tasks (1 hour)

%OAK RIDGE

National Laboratory

SLURM Job Header

%OAK RIDGE
Nati

ional Laboratory

Run the Application

%OAK RIDGE

National Laboratory

Simulation case

! /bin/bash

--output=/ /home/ /batch/hetero_

job component 1
-A

o\

- - 1
#
#
#

- - -per-node=1
--threads-per-core 1
-t 1:00:00

job component 2
- A

-per-node=1
--threads-per-core 1
-t 1:00:00

%OAK RIDGE

National Laboratory

Run the Application in the Simulation Environment

%OAK RIDGE

National Laboratory

Setting up the QFw

#!/bin/bash

module use /sw/frontier/ghpc/modules/
module load quantum/qsim

module 1list

1
2
3
4
5
6
.
8

set

9

y I —
11

12 run_application.sh
13

14

15 gfw_teardown.sh

16

NOTE: Script run in allocation
%OAKRIDGE

National Laboratory

Running the Application

#!/bin/bash

module use /sw/frontier/ghpc/modules/
module load quantum/qsim

module 1list

1
2
3
4
5
6
7
8

set
gfw_setup.sh

run_application.sh

gfw_teardown.sh

%OAK RIDGE

National Laboratory

Tearing down the QFw

#!/bin/bash

module use /sw/frontier/ghpc/modules/
module load quantum/qsim

module 1list

1
2
3
4
5
6
.
8

set

9

10 qfw_setup.sh

11

12 run_application.sh
13

14

15 |gfw_teardown.sh

16

%OAK RIDGE

National Laboratory

Manual Resource Allocation for Simulation

shehataa@loglnl borg:~%$ salloc -N 1 -t 1:0:00 -A stfe@e8 : -N 2 -t 1:0:00 -A stfoos8
Pendlng job
job 208012 queued and waiting for resources
job 208012 has been allocated resources
Granted job allocation 208012
Waiting for resource configuration
Nodes borg@@5 are ready for job

shehataa@borg@@S borg:~$%
shehataa@borg@05.borg:~$
shehataa@borg005.borg:~$ squeue -u shehataa
JOBID PARTITION NAME USER ST NODES NODELIST(REASON)
208012+0 batch interact shehataa R X 1 borg@o5
208012+1 batch interact shehataa R : 2 borg[010-011]
shehataa@borg@005.borg: ~$ I

%OAK RIDGE

National Laboratory

Heterogeneous Allocation

shehataa@loginl.borg:~$% salloc -N 1 -t 1:0:00 -A stfe08 : -N 2 -t 1:0:00 -A stfoos8
salloc: Pending job allocation 208012

salloc: job 208012 queued and waiting for resources

salloc: job 208012 has been allocated resources

salloc: Granted job allocation 208012

salloc: Waiting for resource configuration

salloc: Nodes borg@@5 are ready for job

shehataa@borg005.boxrg:~$
shehataa@borg@05.borg:~$
shehataa@ha —
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
208012+0 batch interact shehataa R 0:07 1 borg@o5
208012+1 batch interact shehataa R 0:07 2 borg[010-011]
shehataa@lag .

%OAK RIDGE

National Laboratory

Run 1 Iterations of a 20 Qubit Circuit

shehataa@borg@05.borg: $./qfw_supermarq.sh async 1 20 ©

%OAK RIDGE

National Laboratory

The QFw Startup: Process Diagram

Simulation Environment

Classical
Application

Look

/

up service

Connect/

Call APlS\

%OAK RIDGE

National Laboratory

A

Service
Directory

Register

e
e

PRTE

Simulators

Directly interfacing with the QFw

« Get the instance of the Resource manager

« Get areference to the QPM API

Grab a if one exists
rmgr = defw_get_resource_mgr()

gpm = defw_reserve_service_by_name(rmgr,

%OAK RIDGE

National Laboratory

Directly interfacing with the QFw

« Get the instance of the Resource manager

« Get areference to the QPM API
Grab a if one exists

rmgr = defw_get_resource_mgr()
gpm = defw_reserve_service_by_name(rmgr,

e Run the circuit

if runtype == .
run_circuit(qpm, startqbit, startgbit+iterations)

elif runtype == :
async_run_circuit(qpm, start_qubits=startqbit,
itr=iterations, increase=increase)

%OAK RIDGE
Nati

ional Laboratory

Generating the Circuit

« Generate circuit

« Convert to QASM 2.0 and create info sfructure

60 def run_circuit(api, start, end):

61 for x in range(start, end):

62 supermarq.benchmarks.ghz.GHZ (num_qubits=x)
63 ghz.circuit()

64 cir.to_qgasm()

65

66
67
68
69
70

¥ OAK RIDGE
National Laboratory

Create the Circuit with the QFw

e Circuit ID (cid) is returned by the QFw

prformat(fg orange+fg bold,

gpm.async_run(cid)

%OAK RIDGE

Nat 1 Labor:

Run the Circuit with the QFw

» Synchronous run returns the circuit result

« Asynchronous run returns immediately
cid = gpm.create_circuit(info)
prformat(fg.orange+fg.bold, f

gpm.async_xun(cid)

%OAK RIDGE
Nati

ional Laboratory

Result output

finished 87c¢9cd81-29a9-4331-9e27-a2c4802alc01l:

AcceleratorBuffer:
Information: {}
Measurements:

11111111111111111111': 1
name: qreg_0x767470
size: 20

*%%**1 20 qubit circuits completed in 65.61467981338501

%OAK RIDGE
Nati

ional Laboratory

Run 4 Iterations of a 20 Qubit Circuit

shehataa@borg@05.borg: $./qfw_supermarq.sh async 4 20 0

%OAK RIDGE

National Laboratory

Result Obtained in about the Same Time

finished a01dc596-8048-4729-8c8d-e2fe6ffff4f8:

AcceleratorBuffer:
Information: {}
Measurements:

'00000000000000000000" : 1
name: qreg_0x767470
size: 20

****4 20 qubit circuits completed in 69.38672184944153

%OAK RIDGE
Nati

ional Laboratory

Using the QFw Backend with a QAOA

« Import the QFw Simulator backend

AerSimulator
simulator

QFWSimulator

%OAK RIDGE

National Laboratory

Importing and Instantiating the QFw Backend

« Import the QFw simulator backend

AerSimulator
simulator
QFWSimulator

simulator
(method="

Use the QFw backend Instance

« Create a backend sampler to be used with QAOA

simulator
(method="

simulator
simulator_obj = QFWSimulator(simulator=sim_type)

dJackend_sampler = BackendSampler (
backend = simulator_obj,
skip_transpilation = False,
options = { : }

%OAK RIDGE
Nati

ional Laboratory

Define the QAOA

54 # Define
55 gaoa_mes = QAOA(
56 sampler = backend_sampler,

57 optimizer = COBYLA(),
58 initial_point = [,
59
60

¥ OAK RIDGE
National Laboratory

Solve the QAOA using the backend

Solve the problem using
qaoca_optimizer = MinimumEigenOptimizer(qgaoa_mes)
qp = maxcut.to_quadratic_program()

Simulate on the
qaoa_result = qaoa_optimizer.solve(qgp)

¥ OAK RIDGE
National Laboratory

Takeaways

Resource Management Abstraction
 Versatile Stack — Supports NISQ and future ey —
quantum systems, integrated with HPC. @
- Cirq
* Formalized Interfaces — Enables integration \ /
of diverse implementations of software layers Quantum Software Stack)
Ond TOO'S Frontend Abstraction

« Optimized Architecture - Manages
scheduling, jobs, and data movement.

Tool Abstraction

[]
[Quantum Programming Interface (QPI)]
| J
[]

Quantum Platform Manager (QPM) API

o
« Seamless Integration — Works with scientific)
apps and workflows. bisdiars Environment

» Flexible Deployment — Supports on-prem and
potentially cloud quantum hardware.

Q AtoS

uuuuuuuuuu

%OAK RIDGE

National Laboratory

Future Plans

Work with the community to detail the Quantum Programming
Interface (QPI)

- Example: What APl categories make sense for quantum applications.

Explore qguantum hardware features
- Engage with vendors: IBM-Q, lonQ, IQM, Quantinuum, etc.
- ldentify the QPM APIs

Work with the community to detail the tool chain interface
- ldentify the optimal interface to allow the integration of new circuit fransformation tools

Achieve efficient guantum-classical resource utilization
— Research strategies for two-level scheduling
- Research strategies for virtualizihg a Quantum Computer
— Heuristics for circuit/resource mappings to improve utilization

%OAK RIDGE

National Laboratory

ORNL Quantum Systems & Software Workshop (OQSSw)

o QCUF: July 21-24, 2025
o OQSSw: July 25, 2025

» Registration link: https://www.olcf.ornl.gov/calendar/ogssw/

%OAK RIDGE

National Laboratory

https://www.olcf.ornl.gov/calendar/oqssw/

Questions?

e Supported by

— This research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-000R22725.

%OAK RIDGE

National Laboratory

Questions for IQM

Error Correction Requirements — Will quantum error correction require high-bandwidth

classical compute resources like GPUs and CPUs, or would a low-power processor (e.g.,
FPGA) suffice?

HPC Simulators — Do you anticipate a continued need for quantum simulators running on
HPC, or will their utility diminish due to increasing memory demands as qubit counts grow?

Hardware Access APIs — Do you provide an API for direct hardware access¢ We could
leverage this to define the Quantum Processing Management (QPM) APIs.

Circuit Runtime Estimation — Have you considered the best approach for calculating how
long a circuit will take to execute on your system?

Circuit Size Variability — Based on your experience, do most applications generate circuits of
consistent size, or are there cases where circuit size varies significantly ¢

Performance Benchmarking — What metrics are most relevant for evaluating hybrid HPC-QC
performance?

%OAK RIDGE

National Laboratory

