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The era of NISQ Devices
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Why it is important to compare QPU’s
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Why it is important to compare QPU’s
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uantum and HPC

( ‘ Login node % g

| Classical jobs queue Circuit jobs queues

Slurm
D [ Pubs / results payload
— '

|

_J Middleware: qiskit primitives handler ’J s3
N ’_\
Classicallnodes Virtual quantum nodes I
( slurmd slurmd slurmd slurmd
CPU ‘ ’ CPU ‘ VvQPU ‘ | VvQPU ‘
Execution
lanes Q t t
uantum computer
‘ CPU ‘ ‘ CPU ‘ ‘ VQPU ‘ | VQPU | B
CEGED Qiskit
resources
from .. import Sampler import requests as r
¢ =QuantumCircuit(...) # submit job
job = Sampler().run(c) r.post(*/jobs", ("pubs"...))
job.result) IIEII
#poll till complete .
while not_terminated: De\{lce Tand
rget(Vjobs/") lIEII device 2
IEI

Classical partition Device 1 partition  Device 2 partition

Sauiree httns'//www ihm com/anantum/blaa/siinercomniitina-24



Quantum in ML

Hybrid Quantum-Classical Machine Learning Pipeline
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Job Scheduling Challenges in NISQ Devices

1.
2.
3.
4.

First, the incompatibility of data representations across different qubit modalities
Second, hardware-specific noise profiles and error channels

Third, the lack of standardized performance metrics

Fourth, variability in gate sets, native operations, and compilation paths



An approach to
solve: QuantumX

* Input alignment-based test-time
adaptation with few-shot learning

Time-efficient
» Build a source model and fine-tune

with new test-time samples (test-
time adaptation)

Data-efficient
» Adaptation can be done using a few
samples
» Evaluations show promising
results with even 1% of samples
(=1 sample)

A framework with a Model with input Alignment
and Residual Learning
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Source: ModelX: A Novel Transfer Learning Approach Across Heterogeneous Datasets



Key Capabilities: Input Alignment
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Offline Compilation

Quantum Scheduler: SCIM MILQ

CircuitProxy

Hardware
Prediction

Quantum Circuit

KEY
CAPABILITIES
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Circuit Cutter




KEY
CAPABILITIES

Few shot adaptation and
Residual Modeling




Scenerio

o Lets talk about a scenario where we want to transfer knowledge across to

QPU’S A and B
o Algorithm used: VQE
o Qubits: Superconducting Qubits
o QPU-A: IBM Kyiv
o QPU-B: Aspen Rigetti

What features to use if want to build predictive model for runtime prediction?
From where and how do we collect the features?
How the knowledge is used?



Domain Invariant H/w Specific
Features Features

For Runtime

native get set,
avg_1qg_gate_time,
avg_2qg_gate_time, readout

duration, coherence time
avg, error_1qg_avg,
error_2q_avg,

ayout_density

cx_directionality,
qubit_frequency,
gate_schedule_duration,
thermal_execution_time,
delay_instruction_granularity,
pulse_alignment_constraints,

Qubit tuning Scheudle, ramp schedule, Qpu
noise floor estimate, quil routing strategy,
qubit_tile_mapping,
acquire_to_measurement_delay, entanglement
connectivity, 2q_gate_pairs,
parallelism score, swap estimate, pairwise
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LIMITATIONS

# The Challenge
- Hybrid quantum-classical HPC systems are
complex and noisy.

- Task performance is affected by:
* Quantum-side: Crosstalk (e.g. ZZ
interactions),
gate errors.
* Classical-side: GPU stalls, CPU delays.
- Existing ML models need large data,
frequent retraining, and struggle with
portability.



KEY
CAPABILITIES

Predictive Resource
and Crosstalk
Modeling:

Can QuantumX Do that?

Is Total Error Prediction a Better Idea?

How the existing error detection models can be
benefitted using the framework?



