

Hybrid Quantum-Classical Architecture for Large Language Model Fine-Tuning: Toward Hybrid CPU + GPU + QPU

ICS2025

June 8, 2025

Sang Hyub Kim, Jonathan Mei, <u>Claudio Girotto</u>, Masako Yamada, Martin Roetteler Technical Program Manager Applications, IonQ

Quantum Is Now

ealthcare and Life Sciences

and and advantation of a state of a local state of a state of a

Computer Aided Engineering

Quantum + Al

Overview

- Hybrid quantum-classical deep learning architecture for large language model fine-tuning.
- Performance for various settings of hyperparameters
- Prediction accuracy increasing with number of qubits, improving over a comparable classical baseline

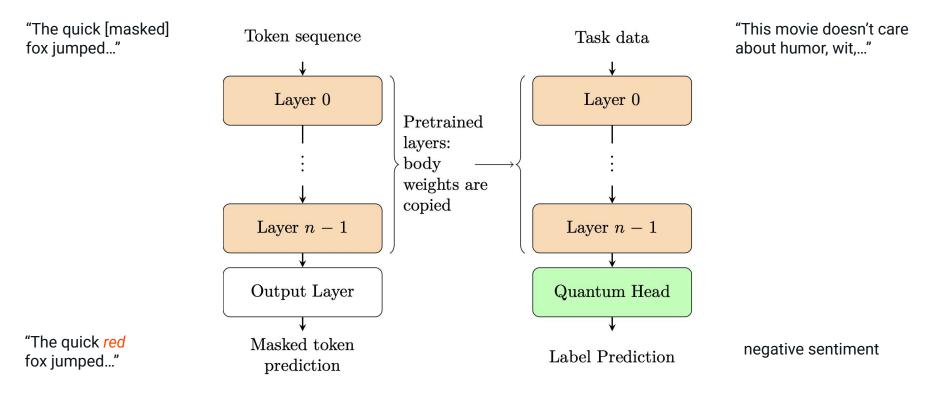
Examples of Foundation Al Fine-Tuning Original purpose of the Base (Large Language) Model (LLM): Open-source general language generation.

Mistral \rightarrow Customer Support Agent GPT-J \rightarrow Mental Health Companion DeepSeek R1 \rightarrow Planning SetFit / BERT (this work) \rightarrow Sentiment prediction

Different strategies in LLM improvement:

- Fine-tuning
- Retrieval-Augmented Generation
- Knowledge Graphs
- Agentic Al

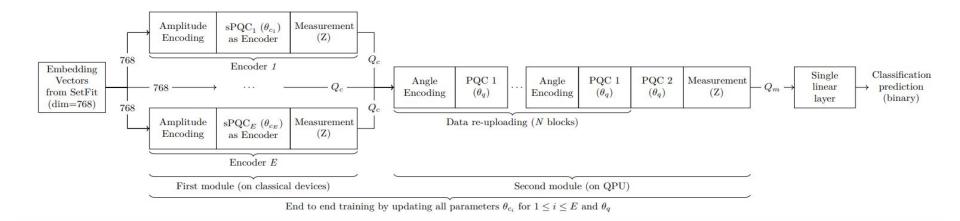
Quantum + AI: Fine-tuning to teach LLMs new tasks



https://arxiv.org/abs/2504.08732

🚺 IONQ

Quantum + AI fine-tuning: hybrid architecture



Our novel hybrid machine learning model combines classical computing with a Quantum Processing Unit (QPU) to reduce the input size and classify data - all trained together in one system.

- The SetFit Embeddings do the initial text embedding
- The Classical Module takes care of pre-processing and hybrid encoding
- The Quantum Module is the Quantum Encoder + Quantum Head
- The Linear Classifier is the optional final layer after quantum output
- The Binary Prediction layer makes the final prediction.

Quantum + AI fine-tuning: hyperparameters considered

Hyperparameter	Symbol	 Example (exploring encoder)
Qubits	Q	10, 12, 14, 16, 18
Number of Encoders	E	4
Re-upload number	R	2
Number of Main blocks	M	1
Number of re-uploading blocks	N	1
Connectivity	C	16
Batch Size	B	8192
Number of Shots	S	
Final linear layer	F	Yes
Learning rate	L	$\{1, 1.5, 2, 2.5, 3, 5\}/10^3$
Learning rate decay	γ	1.0
Weight decay	ρ	0.0

Compute setup

We performed experiments using 3 NVIDIA GPU types:

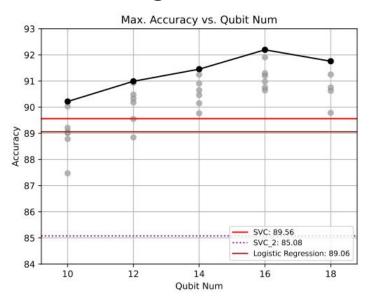
- L4 (24GB)
- A100 (80GB)
- H100 (80GB)

Training duration (800 epochs, single sQE architecture):

- 10-qubit, A100 : ~6.8 hours
- 10-qubit, L4: ~9.1 hours
- 16-qubit, A100 : ~43 hours
- 16-qubit, L4: ~56 hours
- 18-qubit, H100: ~90 hours

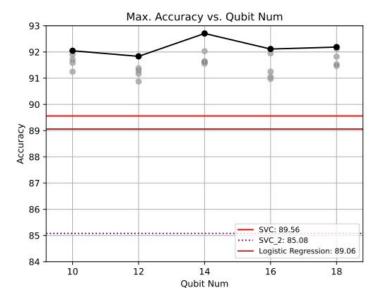
Quantum + AI fine-tuning: results on accuracy

- Shot noise, No gate noise, # of epochs: 800, # of random seeds: 10, # of shots: 8192
- ReUpload #: 4, Layer # (PQC2): 2, Layer # (PQC1): 1, Connectivity: 1, Batch Size: 16, Final Linear Layer: Yes



Single Encoder

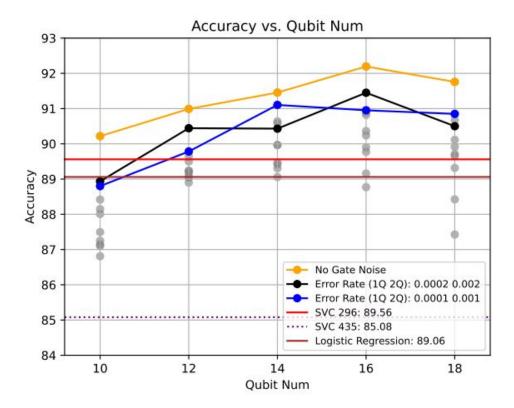
Multi Encoder (2x)



Learning Rate:0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.005 Learning Rate Decay: 1.0 L2 Weight Decay (Regularization): 0.0

5 Learning Rate: 0.001, 0.0015, 0.0025, 0.003, 0.005 Learning Rate Decay: 1.0, 0.99 L2 Weight Decay (Regularization): 0.0 IonQ Proprietary and Confidential. May Not be Used, Shared or Disclosed Without IonQ Permission.

Quantum + AI fine-tuning: results on gate- and shot-noise



IonQ Proprietary and Confidential. May Not be Used, Shared or Disclosed Without IonQ Permission.

Conclusions

We demonstrated a hybrid quantum-classical architecture for LLM fine tuning showing:

- Improved accuracy in low-data regimes
- Enhanced expressivity through quantum circuits
- Energy efficiency at scale
- Parameter-efficient fine-tuning

Next steps

- Quantum validation: Run on QPU (Forte Enterprise). Measure energy consumption
- **Hyperparameter sweep:** Use Frontier! Engaged with AMD and Xanadu (Pennylane) at Spring Hackathon, ongoing development.
- **Base-model re-training:** gentle re-training of the base model.
- New language use cases: more classes; explore other tasks
- New Foundation AI: Chemistry, materials, biology, etc etc

